Compare commits
150 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
947e1a4e4d | ||
|
|
33945a5517 | ||
|
|
953e862aca | ||
|
|
fbf140a665 | ||
|
|
670f958525 | ||
|
|
fed35a25e8 | ||
|
|
d1ef418bb0 | ||
|
|
272d24bf3e | ||
|
|
2624249219 | ||
|
|
4b08d17088 | ||
|
|
5b6169b02d | ||
|
|
2040e93add | ||
|
|
794eb886e4 | ||
|
|
57ba25caaf | ||
|
|
4f74db5630 | ||
|
|
adc4216afb | ||
|
|
fe8e49de9a | ||
|
|
574eb3f4bd | ||
|
|
311b0bdf9a | ||
|
|
f2546c562c | ||
|
|
59c0dacea0 | ||
|
|
b8188b2262 | ||
|
|
136721e608 | ||
|
|
5b500b838b | ||
|
|
cb003ebe22 | ||
|
|
03a5788aa1 | ||
|
|
626f716de6 | ||
|
|
46c5a13103 | ||
|
|
31681f66c9 | ||
|
|
a56ee9268e | ||
|
|
4ece8e5c1e | ||
|
|
34b6a9b909 | ||
|
|
eead549254 | ||
|
|
abafeb4bee | ||
|
|
2b76fa8fa1 | ||
|
|
239cbc6f33 | ||
|
|
2296627528 | ||
|
|
05687285fe | ||
|
|
05f97bae73 | ||
|
|
4323512a65 | ||
|
|
9dddd73c29 | ||
|
|
6c56a7a868 | ||
|
|
bb25bd9c6c | ||
|
|
b7e32b0a18 | ||
|
|
fb94b71e63 | ||
|
|
bc0586d922 | ||
|
|
a7a78f939c | ||
|
|
6dabf045c3 | ||
|
|
df45a0e3f9 | ||
|
|
88d9bb191b | ||
|
|
e302c2de7c | ||
|
|
012f385f5d | ||
|
|
a6f7f22b27 | ||
|
|
8d7dda9fb7 | ||
|
|
fb0881d836 | ||
|
|
ded2b15e05 | ||
|
|
3133964d8c | ||
|
|
f00039b6f2 | ||
|
|
6ccd0f187b | ||
|
|
de40f6a3ad | ||
|
|
dfbd27dc2f | ||
|
|
1531ca8a1b | ||
|
|
71702bbd48 | ||
|
|
8d9bdb5b92 | ||
|
|
2b73a1c039 | ||
|
|
2b0cdd2338 | ||
|
|
f09dc8b67c | ||
|
|
71a122f060 | ||
|
|
3ca24785ae | ||
|
|
1de36cfe4c | ||
|
|
66872a41fc | ||
|
|
e00594e8d2 | ||
|
|
443fd3b660 | ||
|
|
ae9f08d1e5 | ||
|
|
f69712c11d | ||
|
|
be485602de | ||
|
|
bc7615af0e | ||
|
|
4a3eeeff86 | ||
|
|
35c6dfe481 | ||
|
|
f8374280c0 | ||
|
|
0925513529 | ||
|
|
70bdde4085 | ||
|
|
34a5d7cb7f | ||
|
|
487941ea66 | ||
|
|
099f077311 | ||
|
|
8574751911 | ||
|
|
ddae741b72 | ||
|
|
5053d2c127 | ||
|
|
ef72fd79a7 | ||
|
|
658a51ea10 | ||
|
|
7c2da4f06e | ||
|
|
48fa839c80 | ||
|
|
cf0f5e1318 | ||
|
|
20b8a43017 | ||
|
|
b8acadd6a2 | ||
|
|
b372fe7198 | ||
|
|
53fa32a389 | ||
|
|
d1189c20df | ||
|
|
9a6b08b557 | ||
|
|
76e4277696 | ||
|
|
2d917d72f6 | ||
|
|
2629527559 | ||
|
|
bf20061268 | ||
|
|
eddc8d7644 | ||
|
|
b1ce8a3949 | ||
|
|
262c04f297 | ||
|
|
71536a43db | ||
|
|
e6dcdf3e49 | ||
|
|
f426349051 | ||
|
|
42c70697d8 | ||
|
|
1607d88c22 | ||
|
|
c6b82151dd | ||
|
|
39cf46ecd6 | ||
|
|
96b3c400fe | ||
|
|
60a2dc53e7 | ||
|
|
8d98aea6c4 | ||
|
|
d2c9f5e43c | ||
|
|
7dd0c7f4bd | ||
|
|
56c796acee | ||
|
|
2fe203292a | ||
|
|
b6847b371e | ||
|
|
b19862c64a | ||
|
|
9a0dade925 | ||
|
|
ec6208e51b | ||
|
|
74cf66e4c2 | ||
|
|
1f19aca632 | ||
|
|
6f52d573ef | ||
|
|
c593ccb529 | ||
|
|
9f3a38d408 | ||
|
|
f8eb547fb4 | ||
|
|
b77de359bc | ||
|
|
41f74512df | ||
|
|
387dc664bd | ||
|
|
41c9bdbd37 | ||
|
|
222a646437 | ||
|
|
5b411fe606 | ||
|
|
47dd83e56f | ||
|
|
08e23d78aa | ||
|
|
5af0966057 | ||
|
|
faf9dfaa9d | ||
|
|
9d131c8c45 | ||
|
|
5a56886414 | ||
|
|
66c3aaa307 | ||
|
|
b6ffa51c16 | ||
|
|
35f007f17f | ||
|
|
3006d6da23 | ||
|
|
6aaf1d9446 | ||
|
|
5eb87aa56e | ||
|
|
085a43a262 | ||
|
|
32b57b2ee4 |
4
.github/CODEOWNERS
vendored
4
.github/CODEOWNERS
vendored
@@ -17,5 +17,5 @@
|
||||
/scripts/fuzz-parser/ @AlexWaygood
|
||||
|
||||
# red-knot
|
||||
/crates/red_knot* @carljm @MichaReiser @AlexWaygood
|
||||
/crates/ruff_db/ @carljm @MichaReiser @AlexWaygood
|
||||
/crates/red_knot* @carljm @MichaReiser @AlexWaygood @sharkdp
|
||||
/crates/ruff_db/ @carljm @MichaReiser @AlexWaygood @sharkdp
|
||||
|
||||
2
.github/workflows/ci.yaml
vendored
2
.github/workflows/ci.yaml
vendored
@@ -16,7 +16,7 @@ env:
|
||||
CARGO_TERM_COLOR: always
|
||||
RUSTUP_MAX_RETRIES: 10
|
||||
PACKAGE_NAME: ruff
|
||||
PYTHON_VERSION: "3.11"
|
||||
PYTHON_VERSION: "3.12"
|
||||
|
||||
jobs:
|
||||
determine_changes:
|
||||
|
||||
2
.github/workflows/publish-playground.yml
vendored
2
.github/workflows/publish-playground.yml
vendored
@@ -47,7 +47,7 @@ jobs:
|
||||
working-directory: playground
|
||||
- name: "Deploy to Cloudflare Pages"
|
||||
if: ${{ env.CF_API_TOKEN_EXISTS == 'true' }}
|
||||
uses: cloudflare/wrangler-action@v3.9.0
|
||||
uses: cloudflare/wrangler-action@v3.11.0
|
||||
with:
|
||||
apiToken: ${{ secrets.CF_API_TOKEN }}
|
||||
accountId: ${{ secrets.CF_ACCOUNT_ID }}
|
||||
|
||||
8
.github/workflows/publish-pypi.yml
vendored
8
.github/workflows/publish-pypi.yml
vendored
@@ -21,14 +21,12 @@ jobs:
|
||||
# For PyPI's trusted publishing.
|
||||
id-token: write
|
||||
steps:
|
||||
- name: "Install uv"
|
||||
uses: astral-sh/setup-uv@v3
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
pattern: wheels-*
|
||||
path: wheels
|
||||
merge-multiple: true
|
||||
- name: Publish to PyPi
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
skip-existing: true
|
||||
packages-dir: wheels
|
||||
verbose: true
|
||||
run: uv publish -v wheels/*
|
||||
|
||||
@@ -17,7 +17,7 @@ exclude: |
|
||||
|
||||
repos:
|
||||
- repo: https://github.com/abravalheri/validate-pyproject
|
||||
rev: v0.21
|
||||
rev: v0.22
|
||||
hooks:
|
||||
- id: validate-pyproject
|
||||
|
||||
@@ -51,11 +51,15 @@ repos:
|
||||
- id: blacken-docs
|
||||
args: ["--pyi", "--line-length", "130"]
|
||||
files: '^crates/.*/resources/mdtest/.*\.md'
|
||||
exclude: |
|
||||
(?x)^(
|
||||
.*?invalid(_.+)_syntax.md
|
||||
)$
|
||||
additional_dependencies:
|
||||
- black==24.10.0
|
||||
|
||||
- repo: https://github.com/crate-ci/typos
|
||||
rev: v1.26.0
|
||||
rev: v1.27.0
|
||||
hooks:
|
||||
- id: typos
|
||||
|
||||
@@ -69,7 +73,7 @@ repos:
|
||||
pass_filenames: false # This makes it a lot faster
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.7.0
|
||||
rev: v0.7.2
|
||||
hooks:
|
||||
- id: ruff-format
|
||||
- id: ruff
|
||||
|
||||
63
CHANGELOG.md
63
CHANGELOG.md
@@ -1,5 +1,68 @@
|
||||
# Changelog
|
||||
|
||||
## 0.7.3
|
||||
|
||||
### Preview features
|
||||
|
||||
- Formatter: Disallow single-line implicit concatenated strings ([#13928](https://github.com/astral-sh/ruff/pull/13928))
|
||||
- \[`flake8-pyi`\] Include all Python file types for `PYI006` and `PYI066` ([#14059](https://github.com/astral-sh/ruff/pull/14059))
|
||||
- \[`flake8-simplify`\] Implement `split-of-static-string` (`SIM905`) ([#14008](https://github.com/astral-sh/ruff/pull/14008))
|
||||
- \[`refurb`\] Implement `subclass-builtin` (`FURB189`) ([#14105](https://github.com/astral-sh/ruff/pull/14105))
|
||||
- \[`ruff`\] Improve diagnostic messages and docs (`RUF031`, `RUF032`, `RUF034`) ([#14068](https://github.com/astral-sh/ruff/pull/14068))
|
||||
|
||||
### Rule changes
|
||||
|
||||
- Detect items that hash to same value in duplicate sets (`B033`, `PLC0208`) ([#14064](https://github.com/astral-sh/ruff/pull/14064))
|
||||
- \[`eradicate`\] Better detection of IntelliJ language injection comments (`ERA001`) ([#14094](https://github.com/astral-sh/ruff/pull/14094))
|
||||
- \[`flake8-pyi`\] Add autofix for `docstring-in-stub` (`PYI021`) ([#14150](https://github.com/astral-sh/ruff/pull/14150))
|
||||
- \[`flake8-pyi`\] Update `duplicate-literal-member` (`PYI062`) to alawys provide an autofix ([#14188](https://github.com/astral-sh/ruff/pull/14188))
|
||||
- \[`pyflakes`\] Detect items that hash to same value in duplicate dictionaries (`F601`) ([#14065](https://github.com/astral-sh/ruff/pull/14065))
|
||||
- \[`ruff`\] Fix false positive for decorators (`RUF028`) ([#14061](https://github.com/astral-sh/ruff/pull/14061))
|
||||
|
||||
### Bug fixes
|
||||
|
||||
- Avoid parsing joint rule codes as distinct codes in `# noqa` ([#12809](https://github.com/astral-sh/ruff/pull/12809))
|
||||
- \[`eradicate`\] ignore `# language=` in commented-out-code rule (ERA001) ([#14069](https://github.com/astral-sh/ruff/pull/14069))
|
||||
- \[`flake8-bugbear`\] - do not run `mutable-argument-default` on stubs (`B006`) ([#14058](https://github.com/astral-sh/ruff/pull/14058))
|
||||
- \[`flake8-builtins`\] Skip lambda expressions in `builtin-argument-shadowing (A002)` ([#14144](https://github.com/astral-sh/ruff/pull/14144))
|
||||
- \[`flake8-comprehension`\] Also remove trailing comma while fixing `C409` and `C419` ([#14097](https://github.com/astral-sh/ruff/pull/14097))
|
||||
- \[`flake8-simplify`\] Allow `open` without context manager in `return` statement (`SIM115`) ([#14066](https://github.com/astral-sh/ruff/pull/14066))
|
||||
- \[`pylint`\] Respect hash-equivalent literals in `iteration-over-set` (`PLC0208`) ([#14063](https://github.com/astral-sh/ruff/pull/14063))
|
||||
- \[`pylint`\] Update known dunder methods for Python 3.13 (`PLW3201`) ([#14146](https://github.com/astral-sh/ruff/pull/14146))
|
||||
- \[`pyupgrade`\] - ignore kwarg unpacking for `UP044` ([#14053](https://github.com/astral-sh/ruff/pull/14053))
|
||||
- \[`refurb`\] Parse more exotic decimal strings in `verbose-decimal-constructor` (`FURB157`) ([#14098](https://github.com/astral-sh/ruff/pull/14098))
|
||||
|
||||
### Documentation
|
||||
|
||||
- Add links to missing related options within rule documentations ([#13971](https://github.com/astral-sh/ruff/pull/13971))
|
||||
- Add rule short code to mkdocs tags to allow searching via rule codes ([#14040](https://github.com/astral-sh/ruff/pull/14040))
|
||||
|
||||
## 0.7.2
|
||||
|
||||
### Preview features
|
||||
|
||||
- Fix formatting of single with-item with trailing comment ([#14005](https://github.com/astral-sh/ruff/pull/14005))
|
||||
- \[`pyupgrade`\] Add PEP 646 `Unpack` conversion to `*` with fix (`UP044`) ([#13988](https://github.com/astral-sh/ruff/pull/13988))
|
||||
|
||||
### Rule changes
|
||||
|
||||
- Regenerate `known_stdlibs.rs` with stdlibs 2024.10.25 ([#13963](https://github.com/astral-sh/ruff/pull/13963))
|
||||
- \[`flake8-no-pep420`\] Skip namespace package enforcement for PEP 723 scripts (`INP001`) ([#13974](https://github.com/astral-sh/ruff/pull/13974))
|
||||
|
||||
### Server
|
||||
|
||||
- Fix server panic when undoing an edit ([#14010](https://github.com/astral-sh/ruff/pull/14010))
|
||||
|
||||
### Bug fixes
|
||||
|
||||
- Fix issues in discovering ruff in pip build environments ([#13881](https://github.com/astral-sh/ruff/pull/13881))
|
||||
- \[`flake8-type-checking`\] Fix false positive for `singledispatchmethod` (`TCH003`) ([#13941](https://github.com/astral-sh/ruff/pull/13941))
|
||||
- \[`flake8-type-checking`\] Treat return type of `singledispatch` as runtime-required (`TCH003`) ([#13957](https://github.com/astral-sh/ruff/pull/13957))
|
||||
|
||||
### Documentation
|
||||
|
||||
- \[`flake8-simplify`\] Include caveats of enabling `if-else-block-instead-of-if-exp` (`SIM108`) ([#14019](https://github.com/astral-sh/ruff/pull/14019))
|
||||
|
||||
## 0.7.1
|
||||
|
||||
### Preview features
|
||||
|
||||
137
Cargo.lock
generated
137
Cargo.lock
generated
@@ -123,9 +123,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "anyhow"
|
||||
version = "1.0.90"
|
||||
version = "1.0.92"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "37bf3594c4c988a53154954629820791dde498571819ae4ca50ca811e060cc95"
|
||||
checksum = "74f37166d7d48a0284b99dd824694c26119c700b53bf0d1540cdb147dbdaaf13"
|
||||
|
||||
[[package]]
|
||||
name = "append-only-vec"
|
||||
@@ -407,7 +407,7 @@ dependencies = [
|
||||
"heck",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -687,7 +687,7 @@ dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"strsim 0.10.0",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -698,7 +698,7 @@ checksum = "a668eda54683121533a393014d8692171709ff57a7d61f187b6e782719f8933f"
|
||||
dependencies = [
|
||||
"darling_core",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1162,12 +1162,12 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "indexmap"
|
||||
version = "2.5.0"
|
||||
version = "2.6.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "68b900aa2f7301e21c36462b170ee99994de34dff39a4a6a528e80e7376d07e5"
|
||||
checksum = "707907fe3c25f5424cce2cb7e1cbcafee6bdbe735ca90ef77c29e84591e5b9da"
|
||||
dependencies = [
|
||||
"equivalent",
|
||||
"hashbrown 0.14.5",
|
||||
"hashbrown 0.15.0",
|
||||
"serde",
|
||||
]
|
||||
|
||||
@@ -1193,9 +1193,9 @@ checksum = "b248f5224d1d606005e02c97f5aa4e88eeb230488bcc03bc9ca4d7991399f2b5"
|
||||
|
||||
[[package]]
|
||||
name = "inotify"
|
||||
version = "0.9.6"
|
||||
version = "0.10.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "f8069d3ec154eb856955c1c0fbffefbf5f3c40a104ec912d4797314c1801abff"
|
||||
checksum = "fdd168d97690d0b8c412d6b6c10360277f4d7ee495c5d0d5d5fe0854923255cc"
|
||||
dependencies = [
|
||||
"bitflags 1.3.2",
|
||||
"inotify-sys",
|
||||
@@ -1213,9 +1213,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "insta"
|
||||
version = "1.40.0"
|
||||
version = "1.41.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "6593a41c7a73841868772495db7dc1e8ecab43bb5c0b6da2059246c4b506ab60"
|
||||
checksum = "7e9ffc4d4892617c50a928c52b2961cb5174b6fc6ebf252b2fac9d21955c48b8"
|
||||
dependencies = [
|
||||
"console",
|
||||
"globset",
|
||||
@@ -1267,7 +1267,7 @@ dependencies = [
|
||||
"Inflector",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1393,7 +1393,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a2ae40017ac09cd2c6a53504cb3c871c7f2b41466eac5bc66ba63f39073b467b"
|
||||
dependencies = [
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1532,14 +1532,15 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "mio"
|
||||
version = "0.8.11"
|
||||
version = "1.0.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a4a650543ca06a924e8b371db273b2756685faae30f8487da1b56505a8f78b0c"
|
||||
checksum = "80e04d1dcff3aae0704555fe5fee3bcfaf3d1fdf8a7e521d5b9d2b42acb52cec"
|
||||
dependencies = [
|
||||
"hermit-abi",
|
||||
"libc",
|
||||
"log",
|
||||
"wasi",
|
||||
"windows-sys 0.48.0",
|
||||
"windows-sys 0.52.0",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1593,12 +1594,11 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "notify"
|
||||
version = "6.1.1"
|
||||
version = "7.0.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "6205bd8bb1e454ad2e27422015fb5e4f2bcc7e08fa8f27058670d208324a4d2d"
|
||||
checksum = "c533b4c39709f9ba5005d8002048266593c1cfaf3c5f0739d5b8ab0c6c504009"
|
||||
dependencies = [
|
||||
"bitflags 2.6.0",
|
||||
"crossbeam-channel",
|
||||
"filetime",
|
||||
"fsevent-sys",
|
||||
"inotify",
|
||||
@@ -1606,8 +1606,18 @@ dependencies = [
|
||||
"libc",
|
||||
"log",
|
||||
"mio",
|
||||
"notify-types",
|
||||
"walkdir",
|
||||
"windows-sys 0.48.0",
|
||||
"windows-sys 0.52.0",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "notify-types"
|
||||
version = "1.0.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7393c226621f817964ffb3dc5704f9509e107a8b024b489cc2c1b217378785df"
|
||||
dependencies = [
|
||||
"instant",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1786,9 +1796,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "pep440_rs"
|
||||
version = "0.7.1"
|
||||
version = "0.7.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7c8ee724d21f351f9d47276614ac9710975db827ba9fe2ca5a517ba648193307"
|
||||
checksum = "0922a442c78611fa8c5ed6065d2d898a820cf12fa90604217fdb2d01675efec7"
|
||||
dependencies = [
|
||||
"serde",
|
||||
"unicode-width 0.2.0",
|
||||
@@ -1848,7 +1858,7 @@ dependencies = [
|
||||
"pest_meta",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -1963,9 +1973,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "proc-macro2"
|
||||
version = "1.0.88"
|
||||
version = "1.0.89"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7c3a7fc5db1e57d5a779a352c8cdb57b29aa4c40cc69c3a68a7fedc815fbf2f9"
|
||||
checksum = "f139b0662de085916d1fb67d2b4169d1addddda1919e696f3252b740b629986e"
|
||||
dependencies = [
|
||||
"unicode-ident",
|
||||
]
|
||||
@@ -2102,6 +2112,7 @@ dependencies = [
|
||||
"countme",
|
||||
"dir-test",
|
||||
"hashbrown 0.15.0",
|
||||
"indexmap",
|
||||
"insta",
|
||||
"itertools 0.13.0",
|
||||
"memchr",
|
||||
@@ -2247,9 +2258,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "regex"
|
||||
version = "1.11.0"
|
||||
version = "1.11.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "38200e5ee88914975b69f657f0801b6f6dccafd44fd9326302a4aaeecfacb1d8"
|
||||
checksum = "b544ef1b4eac5dc2db33ea63606ae9ffcfac26c1416a2806ae0bf5f56b201191"
|
||||
dependencies = [
|
||||
"aho-corasick",
|
||||
"memchr",
|
||||
@@ -2306,7 +2317,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "ruff"
|
||||
version = "0.7.1"
|
||||
version = "0.7.3"
|
||||
dependencies = [
|
||||
"anyhow",
|
||||
"argfile",
|
||||
@@ -2523,7 +2534,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "ruff_linter"
|
||||
version = "0.7.1"
|
||||
version = "0.7.3"
|
||||
dependencies = [
|
||||
"aho-corasick",
|
||||
"annotate-snippets 0.9.2",
|
||||
@@ -2546,7 +2557,7 @@ dependencies = [
|
||||
"natord",
|
||||
"path-absolutize",
|
||||
"pathdiff",
|
||||
"pep440_rs 0.7.1",
|
||||
"pep440_rs 0.7.2",
|
||||
"pyproject-toml",
|
||||
"quick-junit",
|
||||
"regex",
|
||||
@@ -2590,7 +2601,7 @@ dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"ruff_python_trivia",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -2620,12 +2631,14 @@ dependencies = [
|
||||
"compact_str",
|
||||
"is-macro",
|
||||
"itertools 0.13.0",
|
||||
"memchr",
|
||||
"ruff_cache",
|
||||
"ruff_macros",
|
||||
"ruff_python_trivia",
|
||||
"ruff_source_file",
|
||||
"ruff_text_size",
|
||||
"rustc-hash 2.0.0",
|
||||
"salsa",
|
||||
"schemars",
|
||||
"serde",
|
||||
]
|
||||
@@ -2748,7 +2761,6 @@ dependencies = [
|
||||
"ruff_python_ast",
|
||||
"ruff_python_parser",
|
||||
"ruff_python_stdlib",
|
||||
"ruff_source_file",
|
||||
"ruff_text_size",
|
||||
"rustc-hash 2.0.0",
|
||||
"schemars",
|
||||
@@ -2779,7 +2791,6 @@ dependencies = [
|
||||
"insta",
|
||||
"ruff_python_parser",
|
||||
"ruff_python_trivia",
|
||||
"ruff_source_file",
|
||||
"ruff_text_size",
|
||||
]
|
||||
|
||||
@@ -2838,7 +2849,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "ruff_wasm"
|
||||
version = "0.7.1"
|
||||
version = "0.7.3"
|
||||
dependencies = [
|
||||
"console_error_panic_hook",
|
||||
"console_log",
|
||||
@@ -2877,7 +2888,7 @@ dependencies = [
|
||||
"matchit",
|
||||
"path-absolutize",
|
||||
"path-slash",
|
||||
"pep440_rs 0.7.1",
|
||||
"pep440_rs 0.7.2",
|
||||
"regex",
|
||||
"ruff_cache",
|
||||
"ruff_formatter",
|
||||
@@ -3009,7 +3020,7 @@ dependencies = [
|
||||
"heck",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
"synstructure",
|
||||
]
|
||||
|
||||
@@ -3043,7 +3054,7 @@ dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"serde_derive_internals",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3066,9 +3077,9 @@ checksum = "1c107b6f4780854c8b126e228ea8869f4d7b71260f962fefb57b996b8959ba6b"
|
||||
|
||||
[[package]]
|
||||
name = "serde"
|
||||
version = "1.0.210"
|
||||
version = "1.0.214"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "c8e3592472072e6e22e0a54d5904d9febf8508f65fb8552499a1abc7d1078c3a"
|
||||
checksum = "f55c3193aca71c12ad7890f1785d2b73e1b9f63a0bbc353c08ef26fe03fc56b5"
|
||||
dependencies = [
|
||||
"serde_derive",
|
||||
]
|
||||
@@ -3086,13 +3097,13 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "serde_derive"
|
||||
version = "1.0.210"
|
||||
version = "1.0.214"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "243902eda00fad750862fc144cea25caca5e20d615af0a81bee94ca738f1df1f"
|
||||
checksum = "de523f781f095e28fa605cdce0f8307e451cc0fd14e2eb4cd2e98a355b147766"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3103,7 +3114,7 @@ checksum = "330f01ce65a3a5fe59a60c82f3c9a024b573b8a6e875bd233fe5f934e71d54e3"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3126,7 +3137,7 @@ checksum = "6c64451ba24fc7a6a2d60fc75dd9c83c90903b19028d4eff35e88fc1e86564e9"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3167,7 +3178,7 @@ dependencies = [
|
||||
"darling",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3269,7 +3280,7 @@ dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"rustversion",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3291,9 +3302,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "syn"
|
||||
version = "2.0.82"
|
||||
version = "2.0.87"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "83540f837a8afc019423a8edb95b52a8effe46957ee402287f4292fae35be021"
|
||||
checksum = "25aa4ce346d03a6dcd68dd8b4010bcb74e54e62c90c573f394c46eae99aba32d"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
@@ -3308,7 +3319,7 @@ checksum = "c8af7666ab7b6390ab78131fb5b0fce11d6b7a6951602017c35fa82800708971"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3371,7 +3382,7 @@ dependencies = [
|
||||
"cfg-if",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3382,28 +3393,28 @@ checksum = "5c89e72a01ed4c579669add59014b9a524d609c0c88c6a585ce37485879f6ffb"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
"test-case-core",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "thiserror"
|
||||
version = "1.0.64"
|
||||
version = "1.0.67"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "d50af8abc119fb8bb6dbabcfa89656f46f84aa0ac7688088608076ad2b459a84"
|
||||
checksum = "3b3c6efbfc763e64eb85c11c25320f0737cb7364c4b6336db90aa9ebe27a0bbd"
|
||||
dependencies = [
|
||||
"thiserror-impl",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "thiserror-impl"
|
||||
version = "1.0.64"
|
||||
version = "1.0.67"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "08904e7672f5eb876eaaf87e0ce17857500934f4981c4a0ab2b4aa98baac7fc3"
|
||||
checksum = "b607164372e89797d78b8e23a6d67d5d1038c1c65efd52e1389ef8b77caba2a6"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3515,7 +3526,7 @@ checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3773,7 +3784,7 @@ checksum = "6b91f57fe13a38d0ce9e28a03463d8d3c2468ed03d75375110ec71d93b449a08"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -3859,7 +3870,7 @@ dependencies = [
|
||||
"once_cell",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
"wasm-bindgen-shared",
|
||||
]
|
||||
|
||||
@@ -3893,7 +3904,7 @@ checksum = "26c6ab57572f7a24a4985830b120de1594465e5d500f24afe89e16b4e833ef68"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
"wasm-bindgen-backend",
|
||||
"wasm-bindgen-shared",
|
||||
]
|
||||
@@ -3927,7 +3938,7 @@ checksum = "c97b2ef2c8d627381e51c071c2ab328eac606d3f69dd82bcbca20a9e389d95f0"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@@ -4215,7 +4226,7 @@ checksum = "9ce1b18ccd8e73a9321186f97e46f9f04b778851177567b1975109d26a08d2a6"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.82",
|
||||
"syn 2.0.87",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
10
Cargo.toml
10
Cargo.toml
@@ -81,6 +81,7 @@ hashbrown = { version = "0.15.0", default-features = false, features = [
|
||||
ignore = { version = "0.4.22" }
|
||||
imara-diff = { version = "0.1.5" }
|
||||
imperative = { version = "1.0.4" }
|
||||
indexmap = {version = "2.6.0" }
|
||||
indicatif = { version = "0.17.8" }
|
||||
indoc = { version = "2.0.4" }
|
||||
insta = { version = "1.35.1" }
|
||||
@@ -101,7 +102,7 @@ matchit = { version = "0.8.1" }
|
||||
memchr = { version = "2.7.1" }
|
||||
mimalloc = { version = "0.1.39" }
|
||||
natord = { version = "1.0.9" }
|
||||
notify = { version = "6.1.1" }
|
||||
notify = { version = "7.0.0" }
|
||||
ordermap = { version = "0.5.0" }
|
||||
path-absolutize = { version = "3.1.1" }
|
||||
path-slash = { version = "0.2.1" }
|
||||
@@ -188,8 +189,9 @@ missing_panics_doc = "allow"
|
||||
module_name_repetitions = "allow"
|
||||
must_use_candidate = "allow"
|
||||
similar_names = "allow"
|
||||
single_match_else = "allow"
|
||||
too_many_lines = "allow"
|
||||
# To allow `#[allow(clippy::all)]` in `crates/ruff_python_parser/src/python.rs`.
|
||||
# Without the hashes we run into a `rustfmt` bug in some snapshot tests, see #13250
|
||||
needless_raw_string_hashes = "allow"
|
||||
# Disallowed restriction lints
|
||||
print_stdout = "warn"
|
||||
@@ -202,6 +204,10 @@ get_unwrap = "warn"
|
||||
rc_buffer = "warn"
|
||||
rc_mutex = "warn"
|
||||
rest_pat_in_fully_bound_structs = "warn"
|
||||
# nursery rules
|
||||
redundant_clone = "warn"
|
||||
debug_assert_with_mut_call = "warn"
|
||||
unused_peekable = "warn"
|
||||
|
||||
[profile.release]
|
||||
# Note that we set these explicitly, and these values
|
||||
|
||||
@@ -136,8 +136,8 @@ curl -LsSf https://astral.sh/ruff/install.sh | sh
|
||||
powershell -c "irm https://astral.sh/ruff/install.ps1 | iex"
|
||||
|
||||
# For a specific version.
|
||||
curl -LsSf https://astral.sh/ruff/0.7.1/install.sh | sh
|
||||
powershell -c "irm https://astral.sh/ruff/0.7.1/install.ps1 | iex"
|
||||
curl -LsSf https://astral.sh/ruff/0.7.3/install.sh | sh
|
||||
powershell -c "irm https://astral.sh/ruff/0.7.3/install.ps1 | iex"
|
||||
```
|
||||
|
||||
You can also install Ruff via [Homebrew](https://formulae.brew.sh/formula/ruff), [Conda](https://anaconda.org/conda-forge/ruff),
|
||||
@@ -170,7 +170,7 @@ Ruff can also be used as a [pre-commit](https://pre-commit.com/) hook via [`ruff
|
||||
```yaml
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
# Ruff version.
|
||||
rev: v0.7.1
|
||||
rev: v0.7.3
|
||||
hooks:
|
||||
# Run the linter.
|
||||
- id: ruff
|
||||
@@ -417,6 +417,7 @@ Ruff is used by a number of major open-source projects and companies, including:
|
||||
- [Babel](https://github.com/python-babel/babel)
|
||||
- Benchling ([Refac](https://github.com/benchling/refac))
|
||||
- [Bokeh](https://github.com/bokeh/bokeh)
|
||||
- CrowdCent ([NumerBlox](https://github.com/crowdcent/numerblox)) <!-- typos: ignore -->
|
||||
- [Cryptography (PyCA)](https://github.com/pyca/cryptography)
|
||||
- CERN ([Indico](https://getindico.io/))
|
||||
- [DVC](https://github.com/iterative/dvc)
|
||||
|
||||
@@ -12,6 +12,7 @@ pn = "pn" # `import panel as pn` is a thing
|
||||
poit = "poit"
|
||||
BA = "BA" # acronym for "Bad Allowed", used in testing.
|
||||
jod = "jod" # e.g., `jod-thread`
|
||||
Numer = "Numer" # Library name 'NumerBlox' in "Who's Using Ruff?"
|
||||
|
||||
[default]
|
||||
extend-ignore-re = [
|
||||
|
||||
@@ -5,8 +5,6 @@ use anyhow::{anyhow, Context};
|
||||
use clap::Parser;
|
||||
use colored::Colorize;
|
||||
use crossbeam::channel as crossbeam_channel;
|
||||
use salsa::plumbing::ZalsaDatabase;
|
||||
|
||||
use red_knot_python_semantic::SitePackages;
|
||||
use red_knot_server::run_server;
|
||||
use red_knot_workspace::db::RootDatabase;
|
||||
@@ -14,7 +12,9 @@ use red_knot_workspace::watch;
|
||||
use red_knot_workspace::watch::WorkspaceWatcher;
|
||||
use red_knot_workspace::workspace::settings::Configuration;
|
||||
use red_knot_workspace::workspace::WorkspaceMetadata;
|
||||
use ruff_db::diagnostic::Diagnostic;
|
||||
use ruff_db::system::{OsSystem, System, SystemPath, SystemPathBuf};
|
||||
use salsa::plumbing::ZalsaDatabase;
|
||||
use target_version::TargetVersion;
|
||||
|
||||
use crate::logging::{setup_tracing, Verbosity};
|
||||
@@ -144,7 +144,7 @@ pub fn main() -> ExitStatus {
|
||||
}
|
||||
|
||||
fn run() -> anyhow::Result<ExitStatus> {
|
||||
let args = Args::parse_from(std::env::args().collect::<Vec<_>>());
|
||||
let args = Args::parse_from(std::env::args());
|
||||
|
||||
if matches!(args.command, Some(Command::Server)) {
|
||||
return run_server().map(|()| ExitStatus::Success);
|
||||
@@ -318,8 +318,9 @@ impl MainLoop {
|
||||
} => {
|
||||
let has_diagnostics = !result.is_empty();
|
||||
if check_revision == revision {
|
||||
#[allow(clippy::print_stdout)]
|
||||
for diagnostic in result {
|
||||
tracing::error!("{}", diagnostic);
|
||||
println!("{}", diagnostic.display(db));
|
||||
}
|
||||
} else {
|
||||
tracing::debug!(
|
||||
@@ -378,7 +379,10 @@ impl MainLoopCancellationToken {
|
||||
#[derive(Debug)]
|
||||
enum MainLoopMessage {
|
||||
CheckWorkspace,
|
||||
CheckCompleted { result: Vec<String>, revision: u64 },
|
||||
CheckCompleted {
|
||||
result: Vec<Box<dyn Diagnostic>>,
|
||||
revision: u64,
|
||||
},
|
||||
ApplyChanges(Vec<watch::ChangeEvent>),
|
||||
Exit,
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@ license = { workspace = true }
|
||||
[dependencies]
|
||||
ruff_db = { workspace = true }
|
||||
ruff_index = { workspace = true }
|
||||
ruff_python_ast = { workspace = true }
|
||||
ruff_python_ast = { workspace = true, features = ["salsa"] }
|
||||
ruff_python_stdlib = { workspace = true }
|
||||
ruff_source_file = { workspace = true }
|
||||
ruff_text_size = { workspace = true }
|
||||
@@ -24,7 +24,8 @@ bitflags = { workspace = true }
|
||||
camino = { workspace = true }
|
||||
compact_str = { workspace = true }
|
||||
countme = { workspace = true }
|
||||
itertools = { workspace = true}
|
||||
indexmap = { workspace = true }
|
||||
itertools = { workspace = true }
|
||||
ordermap = { workspace = true }
|
||||
salsa = { workspace = true }
|
||||
thiserror = { workspace = true }
|
||||
@@ -43,10 +44,9 @@ red_knot_test = { workspace = true }
|
||||
red_knot_vendored = { workspace = true }
|
||||
|
||||
anyhow = { workspace = true }
|
||||
dir-test = {workspace = true}
|
||||
dir-test = { workspace = true }
|
||||
insta = { workspace = true }
|
||||
tempfile = { workspace = true }
|
||||
|
||||
[lints]
|
||||
workspace = true
|
||||
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
wrap = 100
|
||||
@@ -0,0 +1,18 @@
|
||||
# Starred expression annotations
|
||||
|
||||
Type annotations for `*args` can be starred expressions themselves:
|
||||
|
||||
```py
|
||||
from typing_extensions import TypeVarTuple
|
||||
|
||||
Ts = TypeVarTuple("Ts")
|
||||
|
||||
def append_int(*args: *Ts) -> tuple[*Ts, int]:
|
||||
# TODO: should show some representation of the variadic generic type
|
||||
reveal_type(args) # revealed: @Todo
|
||||
|
||||
return (*args, 1)
|
||||
|
||||
# TODO should be tuple[Literal[True], Literal["a"], int]
|
||||
reveal_type(append_int(True, "a")) # revealed: @Todo
|
||||
```
|
||||
@@ -0,0 +1,9 @@
|
||||
# String annotations
|
||||
|
||||
```py
|
||||
def f() -> "int":
|
||||
return 1
|
||||
|
||||
# TODO: We do not support string annotations, but we should not panic if we encounter them
|
||||
reveal_type(f()) # revealed: @Todo
|
||||
```
|
||||
@@ -22,3 +22,91 @@ x: int = "foo" # error: [invalid-assignment] "Object of type `Literal["foo"]` i
|
||||
x: int
|
||||
x = "foo" # error: [invalid-assignment] "Object of type `Literal["foo"]` is not assignable to `int`"
|
||||
```
|
||||
|
||||
## Tuple annotations are understood
|
||||
|
||||
```py path=module.py
|
||||
from typing_extensions import Unpack
|
||||
|
||||
a: tuple[()] = ()
|
||||
b: tuple[int] = (42,)
|
||||
c: tuple[str, int] = ("42", 42)
|
||||
d: tuple[tuple[str, str], tuple[int, int]] = (("foo", "foo"), (42, 42))
|
||||
e: tuple[str, ...] = ()
|
||||
# TODO: we should not emit this error
|
||||
# error: [call-possibly-unbound-method] "Method `__class_getitem__` of type `Literal[tuple]` is possibly unbound"
|
||||
f: tuple[str, *tuple[int, ...], bytes] = ("42", b"42")
|
||||
g: tuple[str, Unpack[tuple[int, ...]], bytes] = ("42", b"42")
|
||||
h: tuple[list[int], list[int]] = ([], [])
|
||||
i: tuple[str | int, str | int] = (42, 42)
|
||||
j: tuple[str | int] = (42,)
|
||||
```
|
||||
|
||||
```py path=script.py
|
||||
from module import a, b, c, d, e, f, g, h, i, j
|
||||
|
||||
reveal_type(a) # revealed: tuple[()]
|
||||
reveal_type(b) # revealed: tuple[int]
|
||||
reveal_type(c) # revealed: tuple[str, int]
|
||||
reveal_type(d) # revealed: tuple[tuple[str, str], tuple[int, int]]
|
||||
|
||||
# TODO: homogenous tuples, PEP-646 tuples
|
||||
reveal_type(e) # revealed: @Todo
|
||||
reveal_type(f) # revealed: @Todo
|
||||
reveal_type(g) # revealed: @Todo
|
||||
|
||||
# TODO: support more kinds of type expressions in annotations
|
||||
reveal_type(h) # revealed: @Todo
|
||||
|
||||
reveal_type(i) # revealed: tuple[str | int, str | int]
|
||||
reveal_type(j) # revealed: tuple[str | int]
|
||||
```
|
||||
|
||||
## Incorrect tuple assignments are complained about
|
||||
|
||||
```py
|
||||
# error: [invalid-assignment] "Object of type `tuple[Literal[1], Literal[2]]` is not assignable to `tuple[()]`"
|
||||
a: tuple[()] = (1, 2)
|
||||
|
||||
# error: [invalid-assignment] "Object of type `tuple[Literal["foo"]]` is not assignable to `tuple[int]`"
|
||||
b: tuple[int] = ("foo",)
|
||||
|
||||
# error: [invalid-assignment] "Object of type `tuple[list, Literal["foo"]]` is not assignable to `tuple[str | int, str]`"
|
||||
c: tuple[str | int, str] = ([], "foo")
|
||||
```
|
||||
|
||||
## PEP-604 annotations are supported
|
||||
|
||||
```py
|
||||
def foo() -> str | int | None:
|
||||
return None
|
||||
|
||||
reveal_type(foo()) # revealed: str | int | None
|
||||
|
||||
def bar() -> str | str | None:
|
||||
return None
|
||||
|
||||
reveal_type(bar()) # revealed: str | None
|
||||
|
||||
def baz() -> str | str:
|
||||
return "Hello, world!"
|
||||
|
||||
reveal_type(baz()) # revealed: str
|
||||
```
|
||||
|
||||
## Attribute expressions in type annotations are understood
|
||||
|
||||
```py
|
||||
import builtins
|
||||
|
||||
int = "foo"
|
||||
a: builtins.int = 42
|
||||
|
||||
# error: [invalid-assignment] "Object of type `Literal["bar"]` is not assignable to `int`"
|
||||
b: builtins.int = "bar"
|
||||
|
||||
c: builtins.tuple[builtins.tuple[builtins.int, builtins.int], builtins.int] = ((42, 42), 42)
|
||||
|
||||
# error: [invalid-assignment] "Object of type `Literal["foo"]` is not assignable to `tuple[tuple[int, int], int]`"
|
||||
c: builtins.tuple[builtins.tuple[builtins.int, builtins.int], builtins.int] = "foo"
|
||||
```
|
||||
|
||||
@@ -0,0 +1,182 @@
|
||||
# Augmented assignment
|
||||
|
||||
## Basic
|
||||
|
||||
```py
|
||||
x = 3
|
||||
x -= 1
|
||||
reveal_type(x) # revealed: Literal[2]
|
||||
|
||||
x = 1.0
|
||||
x /= 2
|
||||
reveal_type(x) # revealed: float
|
||||
```
|
||||
|
||||
## Dunder methods
|
||||
|
||||
```py
|
||||
class C:
|
||||
def __isub__(self, other: int) -> str:
|
||||
return "Hello, world!"
|
||||
|
||||
x = C()
|
||||
x -= 1
|
||||
reveal_type(x) # revealed: str
|
||||
|
||||
class C:
|
||||
def __iadd__(self, other: str) -> float:
|
||||
return 1.0
|
||||
|
||||
x = C()
|
||||
x += "Hello"
|
||||
reveal_type(x) # revealed: float
|
||||
```
|
||||
|
||||
## Unsupported types
|
||||
|
||||
```py
|
||||
class C:
|
||||
def __isub__(self, other: str) -> int:
|
||||
return 42
|
||||
|
||||
x = C()
|
||||
x -= 1
|
||||
|
||||
# TODO: should error, once operand type check is implemented
|
||||
reveal_type(x) # revealed: int
|
||||
```
|
||||
|
||||
## Method union
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
class Foo:
|
||||
if bool_instance():
|
||||
def __iadd__(self, other: int) -> str:
|
||||
return "Hello, world!"
|
||||
else:
|
||||
def __iadd__(self, other: int) -> int:
|
||||
return 42
|
||||
|
||||
f = Foo()
|
||||
f += 12
|
||||
|
||||
reveal_type(f) # revealed: str | int
|
||||
```
|
||||
|
||||
## Partially bound `__iadd__`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class Foo:
|
||||
if bool_instance():
|
||||
def __iadd__(self, other: str) -> int:
|
||||
return 42
|
||||
|
||||
f = Foo()
|
||||
|
||||
# TODO: We should emit an `unsupported-operator` error here, possibly with the information
|
||||
# that `Foo.__iadd__` may be unbound as additional context.
|
||||
f += "Hello, world!"
|
||||
|
||||
reveal_type(f) # revealed: int | Unknown
|
||||
```
|
||||
|
||||
## Partially bound with `__add__`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class Foo:
|
||||
def __add__(self, other: str) -> str:
|
||||
return "Hello, world!"
|
||||
if bool_instance():
|
||||
def __iadd__(self, other: str) -> int:
|
||||
return 42
|
||||
|
||||
f = Foo()
|
||||
f += "Hello, world!"
|
||||
|
||||
reveal_type(f) # revealed: int | str
|
||||
```
|
||||
|
||||
## Partially bound target union
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class Foo:
|
||||
def __add__(self, other: int) -> str:
|
||||
return "Hello, world!"
|
||||
if bool_instance():
|
||||
def __iadd__(self, other: int) -> int:
|
||||
return 42
|
||||
|
||||
if bool_instance():
|
||||
f = Foo()
|
||||
else:
|
||||
f = 42.0
|
||||
f += 12
|
||||
|
||||
reveal_type(f) # revealed: int | str | float
|
||||
```
|
||||
|
||||
## Target union
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
class Foo:
|
||||
def __iadd__(self, other: int) -> str:
|
||||
return "Hello, world!"
|
||||
|
||||
if flag:
|
||||
f = Foo()
|
||||
else:
|
||||
f = 42.0
|
||||
f += 12
|
||||
|
||||
reveal_type(f) # revealed: str | float
|
||||
```
|
||||
|
||||
## Partially bound target union with `__add__`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
class Foo:
|
||||
def __add__(self, other: int) -> str:
|
||||
return "Hello, world!"
|
||||
if bool_instance():
|
||||
def __iadd__(self, other: int) -> int:
|
||||
return 42
|
||||
|
||||
class Bar:
|
||||
def __add__(self, other: int) -> bytes:
|
||||
return b"Hello, world!"
|
||||
|
||||
def __iadd__(self, other: int) -> float:
|
||||
return 42.0
|
||||
|
||||
if flag:
|
||||
f = Foo()
|
||||
else:
|
||||
f = Bar()
|
||||
f += 12
|
||||
|
||||
reveal_type(f) # revealed: int | str | float
|
||||
```
|
||||
@@ -3,16 +3,31 @@
|
||||
## Unbound
|
||||
|
||||
```py
|
||||
x = foo
|
||||
x = foo # error: [unresolved-reference] "Name `foo` used when not defined"
|
||||
foo = 1
|
||||
reveal_type(x) # revealed: Unbound
|
||||
|
||||
# No error `unresolved-reference` diagnostic is reported for `x`. This is
|
||||
# desirable because we would get a lot of cascading errors even though there
|
||||
# is only one root cause (the unbound variable `foo`).
|
||||
|
||||
# revealed: Unknown
|
||||
reveal_type(x)
|
||||
```
|
||||
|
||||
Note: in this particular example, one could argue that the most likely error would be a wrong order
|
||||
of the `x`/`foo` definitions, and so it could be desirable to infer `Literal[1]` for the type of
|
||||
`x`. On the other hand, there might be a variable `fob` a little higher up in this file, and the
|
||||
actual error might have been just a typo. Inferring `Unknown` thus seems like the safest option.
|
||||
|
||||
## Unbound class variable
|
||||
|
||||
Name lookups within a class scope fall back to globals, but lookups of class attributes don't.
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1
|
||||
|
||||
class C:
|
||||
@@ -23,3 +38,22 @@ class C:
|
||||
reveal_type(C.x) # revealed: Literal[2]
|
||||
reveal_type(C.y) # revealed: Literal[1]
|
||||
```
|
||||
|
||||
## Possibly unbound in class and global scope
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
if bool_instance():
|
||||
x = "abc"
|
||||
|
||||
class C:
|
||||
if bool_instance():
|
||||
x = 1
|
||||
|
||||
# error: [possibly-unresolved-reference]
|
||||
y = x
|
||||
|
||||
reveal_type(C.y) # revealed: Literal[1] | Literal["abc"]
|
||||
```
|
||||
|
||||
@@ -3,6 +3,11 @@
|
||||
## Union of attributes
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
if flag:
|
||||
class C:
|
||||
x = 1
|
||||
@@ -13,3 +18,38 @@ else:
|
||||
|
||||
reveal_type(C.x) # revealed: Literal[1, 2]
|
||||
```
|
||||
|
||||
## Inherited attributes
|
||||
|
||||
```py
|
||||
class A:
|
||||
X = "foo"
|
||||
|
||||
class B(A): ...
|
||||
class C(B): ...
|
||||
|
||||
reveal_type(C.X) # revealed: Literal["foo"]
|
||||
```
|
||||
|
||||
## Inherited attributes (multiple inheritance)
|
||||
|
||||
```py
|
||||
class O: ...
|
||||
|
||||
class F(O):
|
||||
X = 56
|
||||
|
||||
class E(O):
|
||||
X = 42
|
||||
|
||||
class D(O): ...
|
||||
class C(D, F): ...
|
||||
class B(E, D): ...
|
||||
class A(B, C): ...
|
||||
|
||||
# revealed: tuple[Literal[A], Literal[B], Literal[E], Literal[C], Literal[D], Literal[F], Literal[O], Literal[object]]
|
||||
reveal_type(A.__mro__)
|
||||
|
||||
# `E` is earlier in the MRO than `F`, so we should use the type of `E.X`
|
||||
reveal_type(A.X) # revealed: Literal[42]
|
||||
```
|
||||
|
||||
@@ -9,8 +9,8 @@ For references, see:
|
||||
|
||||
## Operations
|
||||
|
||||
We support inference for all Python's binary operators:
|
||||
`+`, `-`, `*`, `@`, `/`, `//`, `%`, `**`, `<<`, `>>`, `&`, `^`, and `|`.
|
||||
We support inference for all Python's binary operators: `+`, `-`, `*`, `@`, `/`, `//`, `%`, `**`,
|
||||
`<<`, `>>`, `&`, `^`, and `|`.
|
||||
|
||||
```py
|
||||
class A:
|
||||
@@ -152,9 +152,8 @@ reveal_type(B() - A()) # revealed: int
|
||||
|
||||
## Non-reflected precedence in general
|
||||
|
||||
In general, if the left-hand side defines `__add__` and the right-hand side
|
||||
defines `__radd__` and the right-hand side is not a subtype of the left-hand
|
||||
side, `lhs.__add__` will take precedence:
|
||||
In general, if the left-hand side defines `__add__` and the right-hand side defines `__radd__` and
|
||||
the right-hand side is not a subtype of the left-hand side, `lhs.__add__` will take precedence:
|
||||
|
||||
```py
|
||||
class A:
|
||||
@@ -181,9 +180,8 @@ reveal_type(C() + C()) # revealed: int
|
||||
|
||||
## Reflected precedence for subtypes (in some cases)
|
||||
|
||||
If the right-hand operand is a subtype of the left-hand operand and has a
|
||||
different implementation of the reflected method, the reflected method on the
|
||||
right-hand operand takes precedence.
|
||||
If the right-hand operand is a subtype of the left-hand operand and has a different implementation
|
||||
of the reflected method, the reflected method on the right-hand operand takes precedence.
|
||||
|
||||
```py
|
||||
class A:
|
||||
@@ -204,18 +202,13 @@ reveal_type(A() + B()) # revealed: MyString
|
||||
# N.B. Still a subtype of `A`, even though `A` does not appear directly in the class's `__bases__`
|
||||
class C(B): ...
|
||||
|
||||
# TODO: we currently only understand direct subclasses as subtypes of the superclass.
|
||||
# We need to iterate through the full MRO rather than just the class's bases;
|
||||
# if we do, we'll understand `C` as a subtype of `A`, and correctly understand this as being
|
||||
# `MyString` rather than `str`
|
||||
reveal_type(A() + C()) # revealed: str
|
||||
reveal_type(A() + C()) # revealed: MyString
|
||||
```
|
||||
|
||||
## Reflected precedence 2
|
||||
|
||||
If the right-hand operand is a subtype of the left-hand operand, but does not
|
||||
override the reflected method, the left-hand operand's non-reflected method
|
||||
still takes precedence:
|
||||
If the right-hand operand is a subtype of the left-hand operand, but does not override the reflected
|
||||
method, the left-hand operand's non-reflected method still takes precedence:
|
||||
|
||||
```py
|
||||
class A:
|
||||
@@ -232,17 +225,15 @@ reveal_type(A() + B()) # revealed: str
|
||||
|
||||
## Only reflected supported
|
||||
|
||||
For example, at runtime, `(1).__add__(1.2)` is `NotImplemented`, but
|
||||
`(1.2).__radd__(1) == 2.2`, meaning that `1 + 1.2` succeeds at runtime
|
||||
(producing `2.2`). The runtime tries the second one only if the first one
|
||||
returns `NotImplemented` to signal failure.
|
||||
For example, at runtime, `(1).__add__(1.2)` is `NotImplemented`, but `(1.2).__radd__(1) == 2.2`,
|
||||
meaning that `1 + 1.2` succeeds at runtime (producing `2.2`). The runtime tries the second one only
|
||||
if the first one returns `NotImplemented` to signal failure.
|
||||
|
||||
Typeshed and other stubs annotate dunder-method calls that would return
|
||||
`NotImplemented` as being "illegal" calls. `int.__add__` is annotated as only
|
||||
"accepting" `int`s, even though it strictly-speaking "accepts" any other object
|
||||
without raising an exception -- it will simply return `NotImplemented`,
|
||||
allowing the runtime to try the `__radd__` method of the right-hand operand
|
||||
as well.
|
||||
Typeshed and other stubs annotate dunder-method calls that would return `NotImplemented` as being
|
||||
"illegal" calls. `int.__add__` is annotated as only "accepting" `int`s, even though it
|
||||
strictly-speaking "accepts" any other object without raising an exception -- it will simply return
|
||||
`NotImplemented`, allowing the runtime to try the `__radd__` method of the right-hand operand as
|
||||
well.
|
||||
|
||||
```py
|
||||
class A:
|
||||
@@ -308,8 +299,8 @@ reveal_type(y + 4.12) # revealed: int
|
||||
|
||||
## With literal types
|
||||
|
||||
When we have a literal type for one operand, we're able to fall back to the
|
||||
instance handling for its instance super-type.
|
||||
When we have a literal type for one operand, we're able to fall back to the instance handling for
|
||||
its instance super-type.
|
||||
|
||||
```py
|
||||
class A:
|
||||
@@ -348,15 +339,13 @@ reveal_type(literal_string_instance + A()) # revealed: @Todo
|
||||
|
||||
## Operations involving instances of classes inheriting from `Any`
|
||||
|
||||
`Any` and `Unknown` represent a set of possible runtime objects, wherein the
|
||||
bounds of the set are unknown. Whether the left-hand operand's dunder or the
|
||||
right-hand operand's reflected dunder depends on whether the right-hand operand
|
||||
is an instance of a class that is a subclass of the left-hand operand's class
|
||||
and overrides the reflected dunder. In the following example, because of the
|
||||
unknowable nature of `Any`/`Unknown`, we must consider both possibilities:
|
||||
`Any`/`Unknown` might resolve to an unknown third class that inherits from `X`
|
||||
and overrides `__radd__`; but it also might not. Thus, the correct answer here
|
||||
for the `reveal_type` is `int | Unknown`.
|
||||
`Any` and `Unknown` represent a set of possible runtime objects, wherein the bounds of the set are
|
||||
unknown. Whether the left-hand operand's dunder or the right-hand operand's reflected dunder depends
|
||||
on whether the right-hand operand is an instance of a class that is a subclass of the left-hand
|
||||
operand's class and overrides the reflected dunder. In the following example, because of the
|
||||
unknowable nature of `Any`/`Unknown`, we must consider both possibilities: `Any`/`Unknown` might
|
||||
resolve to an unknown third class that inherits from `X` and overrides `__radd__`; but it also might
|
||||
not. Thus, the correct answer here for the `reveal_type` is `int | Unknown`.
|
||||
|
||||
```py
|
||||
from does_not_exist import Foo # error: [unresolved-import]
|
||||
@@ -426,10 +415,9 @@ reveal_type(B() + C())
|
||||
|
||||
### Reflected dunder is not tried between two objects of the same type
|
||||
|
||||
For the specific case where the left-hand operand is the exact same type as the
|
||||
right-hand operand, the reflected dunder of the right-hand operand is not
|
||||
tried; the runtime short-circuits after trying the unreflected dunder of the
|
||||
left-hand operand. For context, see
|
||||
For the specific case where the left-hand operand is the exact same type as the right-hand operand,
|
||||
the reflected dunder of the right-hand operand is not tried; the runtime short-circuits after trying
|
||||
the unreflected dunder of the left-hand operand. For context, see
|
||||
[this mailing list discussion](https://mail.python.org/archives/list/python-dev@python.org/thread/7NZUCODEAPQFMRFXYRMGJXDSIS3WJYIV/).
|
||||
|
||||
```py
|
||||
|
||||
@@ -0,0 +1,78 @@
|
||||
# Short-Circuit Evaluation
|
||||
|
||||
## Not all boolean expressions must be evaluated
|
||||
|
||||
In `or` expressions, if the left-hand side is truthy, the right-hand side is not evaluated.
|
||||
Similarly, in `and` expressions, if the left-hand side is falsy, the right-hand side is not
|
||||
evaluated.
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
if bool_instance() or (x := 1):
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
|
||||
if bool_instance() and (x := 1):
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
```
|
||||
|
||||
## First expression is always evaluated
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
if (x := 1) or bool_instance():
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
|
||||
if (x := 1) and bool_instance():
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
```
|
||||
|
||||
## Statically known truthiness
|
||||
|
||||
```py
|
||||
if True or (x := 1):
|
||||
# TODO: infer that the second arm is never executed, and raise `unresolved-reference`.
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
|
||||
if True and (x := 1):
|
||||
# TODO: infer that the second arm is always executed, do not raise a diagnostic
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
```
|
||||
|
||||
## Later expressions can always use variables from earlier expressions
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
bool_instance() or (x := 1) or reveal_type(x) # revealed: Literal[1]
|
||||
|
||||
# error: [unresolved-reference]
|
||||
bool_instance() or reveal_type(y) or (y := 1) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Nested expressions
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
if bool_instance() or ((x := 1) and bool_instance()):
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
|
||||
if ((y := 1) and bool_instance()) or bool_instance():
|
||||
reveal_type(y) # revealed: Literal[1]
|
||||
|
||||
# error: [possibly-unresolved-reference]
|
||||
if (bool_instance() and (z := 1)) or reveal_type(z): # revealed: Literal[1]
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(z) # revealed: Literal[1]
|
||||
```
|
||||
@@ -18,3 +18,58 @@ class Unit: ...
|
||||
b = Unit()(3.0) # error: "Object of type `Unit` is not callable"
|
||||
reveal_type(b) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Possibly unbound `__call__` method
|
||||
|
||||
```py
|
||||
def flag() -> bool: ...
|
||||
|
||||
class PossiblyNotCallable:
|
||||
if flag():
|
||||
def __call__(self) -> int: ...
|
||||
|
||||
a = PossiblyNotCallable()
|
||||
result = a() # error: "Object of type `PossiblyNotCallable` is not callable (possibly unbound `__call__` method)"
|
||||
reveal_type(result) # revealed: int
|
||||
```
|
||||
|
||||
## Possibly unbound callable
|
||||
|
||||
```py
|
||||
def flag() -> bool: ...
|
||||
|
||||
if flag():
|
||||
class PossiblyUnbound:
|
||||
def __call__(self) -> int: ...
|
||||
|
||||
# error: [possibly-unresolved-reference]
|
||||
a = PossiblyUnbound()
|
||||
reveal_type(a()) # revealed: int
|
||||
```
|
||||
|
||||
## Non-callable `__call__`
|
||||
|
||||
```py
|
||||
class NonCallable:
|
||||
__call__ = 1
|
||||
|
||||
a = NonCallable()
|
||||
# error: "Object of type `NonCallable` is not callable"
|
||||
reveal_type(a()) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Possibly non-callable `__call__`
|
||||
|
||||
```py
|
||||
def flag() -> bool: ...
|
||||
|
||||
class NonCallable:
|
||||
if flag():
|
||||
__call__ = 1
|
||||
else:
|
||||
def __call__(self) -> int: ...
|
||||
|
||||
a = NonCallable()
|
||||
# error: "Object of type `Literal[1] | Literal[__call__]` is not callable (due to union element `Literal[1]`)"
|
||||
reveal_type(a()) # revealed: Unknown | int
|
||||
```
|
||||
|
||||
@@ -44,3 +44,16 @@ reveal_type(bar()) # revealed: @Todo
|
||||
nonsense = 123
|
||||
x = nonsense() # error: "Object of type `Literal[123]` is not callable"
|
||||
```
|
||||
|
||||
## Potentially unbound function
|
||||
|
||||
```py
|
||||
def flag() -> bool: ...
|
||||
|
||||
if flag():
|
||||
def foo() -> int:
|
||||
return 42
|
||||
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(foo()) # revealed: int
|
||||
```
|
||||
|
||||
@@ -3,6 +3,11 @@
|
||||
## Union of return types
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
if flag:
|
||||
|
||||
def f() -> int:
|
||||
@@ -21,6 +26,11 @@ reveal_type(f()) # revealed: int | str
|
||||
```py
|
||||
from nonexistent import f # error: [unresolved-import] "Cannot resolve import `nonexistent`"
|
||||
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
if flag:
|
||||
|
||||
def f() -> int:
|
||||
@@ -34,6 +44,11 @@ reveal_type(f()) # revealed: Unknown | int
|
||||
Calling a union with a non-callable element should emit a diagnostic.
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
if flag:
|
||||
f = 1
|
||||
else:
|
||||
@@ -50,6 +65,11 @@ reveal_type(x) # revealed: Unknown | int
|
||||
Calling a union with multiple non-callable elements should mention all of them in the diagnostic.
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
|
||||
if flag:
|
||||
f = 1
|
||||
elif flag2:
|
||||
@@ -69,6 +89,11 @@ reveal_type(f())
|
||||
Calling a union with no callable elements can emit a simpler diagnostic.
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
if flag:
|
||||
f = 1
|
||||
else:
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# Comparison: Byte literals
|
||||
|
||||
These tests assert that we infer precise `Literal` types for comparisons between objects
|
||||
inferred as having `Literal` bytes types:
|
||||
These tests assert that we infer precise `Literal` types for comparisons between objects inferred as
|
||||
having `Literal` bytes types:
|
||||
|
||||
```py
|
||||
reveal_type(b"abc" == b"abc") # revealed: Literal[True]
|
||||
|
||||
@@ -0,0 +1,40 @@
|
||||
# Identity tests
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
|
||||
def get_a() -> A: ...
|
||||
def get_object() -> object: ...
|
||||
|
||||
a1 = get_a()
|
||||
a2 = get_a()
|
||||
|
||||
n1 = None
|
||||
n2 = None
|
||||
|
||||
o = get_object()
|
||||
|
||||
reveal_type(a1 is a1) # revealed: bool
|
||||
reveal_type(a1 is a2) # revealed: bool
|
||||
|
||||
reveal_type(n1 is n1) # revealed: Literal[True]
|
||||
reveal_type(n1 is n2) # revealed: Literal[True]
|
||||
|
||||
reveal_type(a1 is n1) # revealed: Literal[False]
|
||||
reveal_type(n1 is a1) # revealed: Literal[False]
|
||||
|
||||
reveal_type(a1 is o) # revealed: bool
|
||||
reveal_type(n1 is o) # revealed: bool
|
||||
|
||||
reveal_type(a1 is not a1) # revealed: bool
|
||||
reveal_type(a1 is not a2) # revealed: bool
|
||||
|
||||
reveal_type(n1 is not n1) # revealed: Literal[False]
|
||||
reveal_type(n1 is not n2) # revealed: Literal[False]
|
||||
|
||||
reveal_type(a1 is not n1) # revealed: Literal[True]
|
||||
reveal_type(n1 is not a1) # revealed: Literal[True]
|
||||
|
||||
reveal_type(a1 is not o) # revealed: bool
|
||||
reveal_type(n1 is not o) # revealed: bool
|
||||
```
|
||||
@@ -0,0 +1,160 @@
|
||||
# Comparison: Membership Test
|
||||
|
||||
In Python, the term "membership test operators" refers to the operators `in` and `not in`. To
|
||||
customize their behavior, classes can implement one of the special methods `__contains__`,
|
||||
`__iter__`, or `__getitem__`.
|
||||
|
||||
For references, see:
|
||||
|
||||
- <https://docs.python.org/3/reference/expressions.html#membership-test-details>
|
||||
- <https://docs.python.org/3/reference/datamodel.html#object.__contains__>
|
||||
- <https://snarky.ca/unravelling-membership-testing/>
|
||||
|
||||
## Implements `__contains__`
|
||||
|
||||
Classes can support membership tests by implementing the `__contains__` method:
|
||||
|
||||
```py
|
||||
class A:
|
||||
def __contains__(self, item: str) -> bool:
|
||||
return True
|
||||
|
||||
reveal_type("hello" in A()) # revealed: bool
|
||||
reveal_type("hello" not in A()) # revealed: bool
|
||||
# TODO: should emit diagnostic, need to check arg type, will fail
|
||||
reveal_type(42 in A()) # revealed: bool
|
||||
reveal_type(42 not in A()) # revealed: bool
|
||||
```
|
||||
|
||||
## Implements `__iter__`
|
||||
|
||||
Classes that don't implement `__contains__`, but do implement `__iter__`, also support containment
|
||||
checks; the needle will be sought in their iterated items:
|
||||
|
||||
```py
|
||||
class StringIterator:
|
||||
def __next__(self) -> str:
|
||||
return "foo"
|
||||
|
||||
class A:
|
||||
def __iter__(self) -> StringIterator:
|
||||
return StringIterator()
|
||||
|
||||
reveal_type("hello" in A()) # revealed: bool
|
||||
reveal_type("hello" not in A()) # revealed: bool
|
||||
reveal_type(42 in A()) # revealed: bool
|
||||
reveal_type(42 not in A()) # revealed: bool
|
||||
```
|
||||
|
||||
## Implements `__getitems__`
|
||||
|
||||
The final fallback is to implement `__getitem__` for integer keys. Python will call `__getitem__`
|
||||
with `0`, `1`, `2`... until either the needle is found (leading the membership test to evaluate to
|
||||
`True`) or `__getitem__` raises `IndexError` (the raised exception is swallowed, but results in the
|
||||
membership test evaluating to `False`).
|
||||
|
||||
```py
|
||||
class A:
|
||||
def __getitem__(self, key: int) -> str:
|
||||
return "foo"
|
||||
|
||||
reveal_type("hello" in A()) # revealed: bool
|
||||
reveal_type("hello" not in A()) # revealed: bool
|
||||
reveal_type(42 in A()) # revealed: bool
|
||||
reveal_type(42 not in A()) # revealed: bool
|
||||
```
|
||||
|
||||
## Wrong Return Type
|
||||
|
||||
Python coerces the results of containment checks to `bool`, even if `__contains__` returns a
|
||||
non-bool:
|
||||
|
||||
```py
|
||||
class A:
|
||||
def __contains__(self, item: str) -> str:
|
||||
return "foo"
|
||||
|
||||
reveal_type("hello" in A()) # revealed: bool
|
||||
reveal_type("hello" not in A()) # revealed: bool
|
||||
```
|
||||
|
||||
## Literal Result for `in` and `not in`
|
||||
|
||||
`__contains__` with a literal return type may result in a `BooleanLiteral` outcome.
|
||||
|
||||
```py
|
||||
from typing import Literal
|
||||
|
||||
class AlwaysTrue:
|
||||
def __contains__(self, item: int) -> Literal[1]:
|
||||
return 1
|
||||
|
||||
class AlwaysFalse:
|
||||
def __contains__(self, item: int) -> Literal[""]:
|
||||
return ""
|
||||
|
||||
reveal_type(42 in AlwaysTrue()) # revealed: Literal[True]
|
||||
reveal_type(42 not in AlwaysTrue()) # revealed: Literal[False]
|
||||
|
||||
reveal_type(42 in AlwaysFalse()) # revealed: Literal[False]
|
||||
reveal_type(42 not in AlwaysFalse()) # revealed: Literal[True]
|
||||
```
|
||||
|
||||
## No Fallback for `__contains__`
|
||||
|
||||
If `__contains__` is implemented, checking membership of a type it doesn't accept is an error; it
|
||||
doesn't result in a fallback to `__iter__` or `__getitem__`:
|
||||
|
||||
```py
|
||||
class CheckContains: ...
|
||||
class CheckIter: ...
|
||||
class CheckGetItem: ...
|
||||
|
||||
class CheckIterIterator:
|
||||
def __next__(self) -> CheckIter:
|
||||
return CheckIter()
|
||||
|
||||
class A:
|
||||
def __contains__(self, item: CheckContains) -> bool:
|
||||
return True
|
||||
|
||||
def __iter__(self) -> CheckIterIterator:
|
||||
return CheckIterIterator()
|
||||
|
||||
def __getitem__(self, key: int) -> CheckGetItem:
|
||||
return CheckGetItem()
|
||||
|
||||
reveal_type(CheckContains() in A()) # revealed: bool
|
||||
|
||||
# TODO: should emit diagnostic, need to check arg type,
|
||||
# should not fall back to __iter__ or __getitem__
|
||||
reveal_type(CheckIter() in A()) # revealed: bool
|
||||
reveal_type(CheckGetItem() in A()) # revealed: bool
|
||||
|
||||
class B:
|
||||
def __iter__(self) -> CheckIterIterator:
|
||||
return CheckIterIterator()
|
||||
|
||||
def __getitem__(self, key: int) -> CheckGetItem:
|
||||
return CheckGetItem()
|
||||
|
||||
reveal_type(CheckIter() in B()) # revealed: bool
|
||||
# Always use `__iter__`, regardless of iterated type; there's no NotImplemented
|
||||
# in this case, so there's no fallback to `__getitem__`
|
||||
reveal_type(CheckGetItem() in B()) # revealed: bool
|
||||
```
|
||||
|
||||
## Invalid Old-Style Iteration
|
||||
|
||||
If `__getitem__` is implemented but does not accept integer arguments, then the membership test is
|
||||
not supported and should trigger a diagnostic.
|
||||
|
||||
```py
|
||||
class A:
|
||||
def __getitem__(self, key: str) -> str:
|
||||
return "foo"
|
||||
|
||||
# TODO should emit a diagnostic
|
||||
reveal_type(42 in A()) # revealed: bool
|
||||
reveal_type("hello" in A()) # revealed: bool
|
||||
```
|
||||
@@ -0,0 +1,328 @@
|
||||
# Comparison: Rich Comparison
|
||||
|
||||
Rich comparison operations (`==`, `!=`, `<`, `<=`, `>`, `>=`) in Python are implemented through
|
||||
double-underscore methods that allow customization of comparison behavior.
|
||||
|
||||
For references, see:
|
||||
|
||||
- <https://docs.python.org/3/reference/datamodel.html#object.__lt__>
|
||||
- <https://snarky.ca/unravelling-rich-comparison-operators/>
|
||||
|
||||
## Rich Comparison Dunder Implementations For Same Class
|
||||
|
||||
Classes can support rich comparison by implementing dunder methods like `__eq__`, `__ne__`, etc. The
|
||||
most common case involves implementing these methods for the same type:
|
||||
|
||||
```py
|
||||
from __future__ import annotations
|
||||
|
||||
class A:
|
||||
def __eq__(self, other: A) -> int:
|
||||
return 42
|
||||
|
||||
def __ne__(self, other: A) -> float:
|
||||
return 42.0
|
||||
|
||||
def __lt__(self, other: A) -> str:
|
||||
return "42"
|
||||
|
||||
def __le__(self, other: A) -> bytes:
|
||||
return b"42"
|
||||
|
||||
def __gt__(self, other: A) -> list:
|
||||
return [42]
|
||||
|
||||
def __ge__(self, other: A) -> set:
|
||||
return {42}
|
||||
|
||||
reveal_type(A() == A()) # revealed: int
|
||||
reveal_type(A() != A()) # revealed: float
|
||||
reveal_type(A() < A()) # revealed: str
|
||||
reveal_type(A() <= A()) # revealed: bytes
|
||||
reveal_type(A() > A()) # revealed: list
|
||||
reveal_type(A() >= A()) # revealed: set
|
||||
```
|
||||
|
||||
## Rich Comparison Dunder Implementations for Other Class
|
||||
|
||||
In some cases, classes may implement rich comparison dunder methods for comparisons with a different
|
||||
type:
|
||||
|
||||
```py
|
||||
from __future__ import annotations
|
||||
|
||||
class A:
|
||||
def __eq__(self, other: B) -> int:
|
||||
return 42
|
||||
|
||||
def __ne__(self, other: B) -> float:
|
||||
return 42.0
|
||||
|
||||
def __lt__(self, other: B) -> str:
|
||||
return "42"
|
||||
|
||||
def __le__(self, other: B) -> bytes:
|
||||
return b"42"
|
||||
|
||||
def __gt__(self, other: B) -> list:
|
||||
return [42]
|
||||
|
||||
def __ge__(self, other: B) -> set:
|
||||
return {42}
|
||||
|
||||
class B: ...
|
||||
|
||||
reveal_type(A() == B()) # revealed: int
|
||||
reveal_type(A() != B()) # revealed: float
|
||||
reveal_type(A() < B()) # revealed: str
|
||||
reveal_type(A() <= B()) # revealed: bytes
|
||||
reveal_type(A() > B()) # revealed: list
|
||||
reveal_type(A() >= B()) # revealed: set
|
||||
```
|
||||
|
||||
## Reflected Comparisons
|
||||
|
||||
Fallback to the right-hand side’s comparison methods occurs when the left-hand side does not define
|
||||
them. Note: class `B` has its own `__eq__` and `__ne__` methods to override those of `object`, but
|
||||
these methods will be ignored here because they require a mismatched operand type.
|
||||
|
||||
```py
|
||||
from __future__ import annotations
|
||||
|
||||
class A:
|
||||
def __eq__(self, other: B) -> int:
|
||||
return 42
|
||||
|
||||
def __ne__(self, other: B) -> float:
|
||||
return 42.0
|
||||
|
||||
def __lt__(self, other: B) -> str:
|
||||
return "42"
|
||||
|
||||
def __le__(self, other: B) -> bytes:
|
||||
return b"42"
|
||||
|
||||
def __gt__(self, other: B) -> list:
|
||||
return [42]
|
||||
|
||||
def __ge__(self, other: B) -> set:
|
||||
return {42}
|
||||
|
||||
class B:
|
||||
# To override builtins.object.__eq__ and builtins.object.__ne__
|
||||
# TODO these should emit an invalid override diagnostic
|
||||
def __eq__(self, other: str) -> B:
|
||||
return B()
|
||||
|
||||
def __ne__(self, other: str) -> B:
|
||||
return B()
|
||||
|
||||
# TODO: should be `int` and `float`.
|
||||
# Need to check arg type and fall back to `rhs.__eq__` and `rhs.__ne__`.
|
||||
#
|
||||
# Because `object.__eq__` and `object.__ne__` accept `object` in typeshed,
|
||||
# this can only happen with an invalid override of these methods,
|
||||
# but we still support it.
|
||||
reveal_type(B() == A()) # revealed: B
|
||||
reveal_type(B() != A()) # revealed: B
|
||||
|
||||
reveal_type(B() < A()) # revealed: list
|
||||
reveal_type(B() <= A()) # revealed: set
|
||||
|
||||
reveal_type(B() > A()) # revealed: str
|
||||
reveal_type(B() >= A()) # revealed: bytes
|
||||
|
||||
class C:
|
||||
def __gt__(self, other: C) -> int:
|
||||
return 42
|
||||
|
||||
def __ge__(self, other: C) -> float:
|
||||
return 42.0
|
||||
|
||||
reveal_type(C() < C()) # revealed: int
|
||||
reveal_type(C() <= C()) # revealed: float
|
||||
```
|
||||
|
||||
## Reflected Comparisons with Subclasses
|
||||
|
||||
When subclasses override comparison methods, these overridden methods take precedence over those in
|
||||
the parent class. Class `B` inherits from `A` and redefines comparison methods to return types other
|
||||
than `A`.
|
||||
|
||||
```py
|
||||
from __future__ import annotations
|
||||
|
||||
class A:
|
||||
def __eq__(self, other: A) -> A:
|
||||
return A()
|
||||
|
||||
def __ne__(self, other: A) -> A:
|
||||
return A()
|
||||
|
||||
def __lt__(self, other: A) -> A:
|
||||
return A()
|
||||
|
||||
def __le__(self, other: A) -> A:
|
||||
return A()
|
||||
|
||||
def __gt__(self, other: A) -> A:
|
||||
return A()
|
||||
|
||||
def __ge__(self, other: A) -> A:
|
||||
return A()
|
||||
|
||||
class B(A):
|
||||
def __eq__(self, other: A) -> int:
|
||||
return 42
|
||||
|
||||
def __ne__(self, other: A) -> float:
|
||||
return 42.0
|
||||
|
||||
def __lt__(self, other: A) -> str:
|
||||
return "42"
|
||||
|
||||
def __le__(self, other: A) -> bytes:
|
||||
return b"42"
|
||||
|
||||
def __gt__(self, other: A) -> list:
|
||||
return [42]
|
||||
|
||||
def __ge__(self, other: A) -> set:
|
||||
return {42}
|
||||
|
||||
reveal_type(A() == B()) # revealed: int
|
||||
reveal_type(A() != B()) # revealed: float
|
||||
|
||||
reveal_type(A() < B()) # revealed: list
|
||||
reveal_type(A() <= B()) # revealed: set
|
||||
|
||||
reveal_type(A() > B()) # revealed: str
|
||||
reveal_type(A() >= B()) # revealed: bytes
|
||||
```
|
||||
|
||||
## Reflected Comparisons with Subclass But Falls Back to LHS
|
||||
|
||||
In the case of a subclass, the right-hand side has priority. However, if the overridden dunder
|
||||
method has an mismatched type to operand, the comparison will fall back to the left-hand side.
|
||||
|
||||
```py
|
||||
from __future__ import annotations
|
||||
|
||||
class A:
|
||||
def __lt__(self, other: A) -> A:
|
||||
return A()
|
||||
|
||||
def __gt__(self, other: A) -> A:
|
||||
return A()
|
||||
|
||||
class B(A):
|
||||
def __lt__(self, other: int) -> B:
|
||||
return B()
|
||||
|
||||
def __gt__(self, other: int) -> B:
|
||||
return B()
|
||||
|
||||
# TODO: should be `A`, need to check argument type and fall back to LHS method
|
||||
reveal_type(A() < B()) # revealed: B
|
||||
reveal_type(A() > B()) # revealed: B
|
||||
```
|
||||
|
||||
## Operations involving instances of classes inheriting from `Any`
|
||||
|
||||
`Any` and `Unknown` represent a set of possible runtime objects, wherein the bounds of the set are
|
||||
unknown. Whether the left-hand operand's dunder or the right-hand operand's reflected dunder depends
|
||||
on whether the right-hand operand is an instance of a class that is a subclass of the left-hand
|
||||
operand's class and overrides the reflected dunder. In the following example, because of the
|
||||
unknowable nature of `Any`/`Unknown`, we must consider both possibilities: `Any`/`Unknown` might
|
||||
resolve to an unknown third class that inherits from `X` and overrides `__gt__`; but it also might
|
||||
not. Thus, the correct answer here for the `reveal_type` is `int | Unknown`.
|
||||
|
||||
(This test is referenced from `mdtest/binary/instances.md`)
|
||||
|
||||
```py
|
||||
from does_not_exist import Foo # error: [unresolved-import]
|
||||
|
||||
reveal_type(Foo) # revealed: Unknown
|
||||
|
||||
class X:
|
||||
def __lt__(self, other: object) -> int:
|
||||
return 42
|
||||
|
||||
class Y(Foo): ...
|
||||
|
||||
# TODO: Should be `int | Unknown`; see above discussion.
|
||||
reveal_type(X() < Y()) # revealed: int
|
||||
```
|
||||
|
||||
## Equality and Inequality Fallback
|
||||
|
||||
This test confirms that `==` and `!=` comparisons default to identity comparisons (`is`, `is not`)
|
||||
when argument types do not match the method signature.
|
||||
|
||||
Please refer to the [docs](https://docs.python.org/3/reference/datamodel.html#object.__eq__)
|
||||
|
||||
```py
|
||||
from __future__ import annotations
|
||||
|
||||
class A:
|
||||
# TODO both these overrides should emit invalid-override diagnostic
|
||||
def __eq__(self, other: int) -> A:
|
||||
return A()
|
||||
|
||||
def __ne__(self, other: int) -> A:
|
||||
return A()
|
||||
|
||||
# TODO: it should be `bool`, need to check arg type and fall back to `is` and `is not`
|
||||
reveal_type(A() == A()) # revealed: A
|
||||
reveal_type(A() != A()) # revealed: A
|
||||
```
|
||||
|
||||
## Object Comparisons with Typeshed
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
|
||||
reveal_type(A() == object()) # revealed: bool
|
||||
reveal_type(A() != object()) # revealed: bool
|
||||
reveal_type(object() == A()) # revealed: bool
|
||||
reveal_type(object() != A()) # revealed: bool
|
||||
|
||||
# error: [unsupported-operator] "Operator `<` is not supported for types `A` and `object`"
|
||||
# revealed: Unknown
|
||||
reveal_type(A() < object())
|
||||
```
|
||||
|
||||
## Numbers Comparison with typeshed
|
||||
|
||||
```py
|
||||
reveal_type(1 == 1.0) # revealed: bool
|
||||
reveal_type(1 != 1.0) # revealed: bool
|
||||
reveal_type(1 < 1.0) # revealed: bool
|
||||
reveal_type(1 <= 1.0) # revealed: bool
|
||||
reveal_type(1 > 1.0) # revealed: bool
|
||||
reveal_type(1 >= 1.0) # revealed: bool
|
||||
|
||||
reveal_type(1 == 2j) # revealed: bool
|
||||
reveal_type(1 != 2j) # revealed: bool
|
||||
|
||||
# TODO: should be Unknown and emit diagnostic,
|
||||
# need to check arg type and should be failed
|
||||
reveal_type(1 < 2j) # revealed: bool
|
||||
reveal_type(1 <= 2j) # revealed: bool
|
||||
reveal_type(1 > 2j) # revealed: bool
|
||||
reveal_type(1 >= 2j) # revealed: bool
|
||||
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
x = bool_instance()
|
||||
y = int_instance()
|
||||
|
||||
reveal_type(x < y) # revealed: bool
|
||||
reveal_type(y < x) # revealed: bool
|
||||
reveal_type(4.2 < x) # revealed: bool
|
||||
reveal_type(x < 4.2) # revealed: bool
|
||||
```
|
||||
@@ -12,16 +12,18 @@ reveal_type(1 is 1) # revealed: bool
|
||||
reveal_type(1 is not 1) # revealed: bool
|
||||
reveal_type(1 is 2) # revealed: Literal[False]
|
||||
reveal_type(1 is not 7) # revealed: Literal[True]
|
||||
reveal_type(1 <= "" and 0 < 1) # revealed: @Todo | Literal[True]
|
||||
# TODO: should be Unknown, and emit diagnostic, once we check call argument types
|
||||
reveal_type(1 <= "" and 0 < 1) # revealed: bool
|
||||
```
|
||||
|
||||
## Integer instance
|
||||
|
||||
```py
|
||||
# TODO: implement lookup of `__eq__` on typeshed `int` stub.
|
||||
def int_instance() -> int: ...
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
reveal_type(1 == int_instance()) # revealed: @Todo
|
||||
reveal_type(1 == int_instance()) # revealed: bool
|
||||
reveal_type(9 < int_instance()) # revealed: bool
|
||||
reveal_type(int_instance() < int_instance()) # revealed: bool
|
||||
```
|
||||
|
||||
@@ -0,0 +1,155 @@
|
||||
# Comparison: Intersections
|
||||
|
||||
## Positive contributions
|
||||
|
||||
If we have an intersection type `A & B` and we get a definitive true/false answer for one of the
|
||||
types, we can infer that the result for the intersection type is also true/false:
|
||||
|
||||
```py
|
||||
class Base: ...
|
||||
|
||||
class Child1(Base):
|
||||
def __eq__(self, other) -> Literal[True]:
|
||||
return True
|
||||
|
||||
class Child2(Base): ...
|
||||
|
||||
def get_base() -> Base: ...
|
||||
|
||||
x = get_base()
|
||||
c1 = Child1()
|
||||
|
||||
# Create an intersection type through narrowing:
|
||||
if isinstance(x, Child1):
|
||||
if isinstance(x, Child2):
|
||||
reveal_type(x) # revealed: Child1 & Child2
|
||||
|
||||
reveal_type(x == 1) # revealed: Literal[True]
|
||||
|
||||
# Other comparison operators fall back to the base type:
|
||||
reveal_type(x > 1) # revealed: bool
|
||||
reveal_type(x is c1) # revealed: bool
|
||||
```
|
||||
|
||||
## Negative contributions
|
||||
|
||||
Negative contributions to the intersection type only allow simplifications in a few special cases
|
||||
(equality and identity comparisons).
|
||||
|
||||
### Equality comparisons
|
||||
|
||||
#### Literal strings
|
||||
|
||||
```py
|
||||
x = "x" * 1_000_000_000
|
||||
y = "y" * 1_000_000_000
|
||||
reveal_type(x) # revealed: LiteralString
|
||||
|
||||
if x != "abc":
|
||||
reveal_type(x) # revealed: LiteralString & ~Literal["abc"]
|
||||
|
||||
reveal_type(x == "abc") # revealed: Literal[False]
|
||||
reveal_type("abc" == x) # revealed: Literal[False]
|
||||
reveal_type(x == "something else") # revealed: bool
|
||||
reveal_type("something else" == x) # revealed: bool
|
||||
|
||||
reveal_type(x != "abc") # revealed: Literal[True]
|
||||
reveal_type("abc" != x) # revealed: Literal[True]
|
||||
reveal_type(x != "something else") # revealed: bool
|
||||
reveal_type("something else" != x) # revealed: bool
|
||||
|
||||
reveal_type(x == y) # revealed: bool
|
||||
reveal_type(y == x) # revealed: bool
|
||||
reveal_type(x != y) # revealed: bool
|
||||
reveal_type(y != x) # revealed: bool
|
||||
|
||||
reveal_type(x >= "abc") # revealed: bool
|
||||
reveal_type("abc" >= x) # revealed: bool
|
||||
|
||||
reveal_type(x in "abc") # revealed: bool
|
||||
reveal_type("abc" in x) # revealed: bool
|
||||
```
|
||||
|
||||
#### Integers
|
||||
|
||||
```py
|
||||
def get_int() -> int: ...
|
||||
|
||||
x = get_int()
|
||||
|
||||
if x != 1:
|
||||
reveal_type(x) # revealed: int & ~Literal[1]
|
||||
|
||||
reveal_type(x != 1) # revealed: Literal[True]
|
||||
reveal_type(x != 2) # revealed: bool
|
||||
|
||||
reveal_type(x == 1) # revealed: Literal[False]
|
||||
reveal_type(x == 2) # revealed: bool
|
||||
```
|
||||
|
||||
### Identity comparisons
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
|
||||
def get_object() -> object: ...
|
||||
|
||||
o = object()
|
||||
|
||||
a = A()
|
||||
n = None
|
||||
|
||||
if o is not None:
|
||||
reveal_type(o) # revealed: object & ~None
|
||||
|
||||
reveal_type(o is n) # revealed: Literal[False]
|
||||
reveal_type(o is not n) # revealed: Literal[True]
|
||||
```
|
||||
|
||||
## Diagnostics
|
||||
|
||||
### Unsupported operators for positive contributions
|
||||
|
||||
Raise an error if any of the positive contributions to the intersection type are unsupported for the
|
||||
given operator:
|
||||
|
||||
```py
|
||||
class Container:
|
||||
def __contains__(self, x) -> bool: ...
|
||||
|
||||
class NonContainer: ...
|
||||
|
||||
def get_object() -> object: ...
|
||||
|
||||
x = get_object()
|
||||
|
||||
if isinstance(x, Container):
|
||||
if isinstance(x, NonContainer):
|
||||
reveal_type(x) # revealed: Container & NonContainer
|
||||
|
||||
# error: [unsupported-operator] "Operator `in` is not supported for types `int` and `NonContainer`"
|
||||
reveal_type(2 in x) # revealed: bool
|
||||
```
|
||||
|
||||
### Unsupported operators for negative contributions
|
||||
|
||||
Do *not* raise an error if any of the negative contributions to the intersection type are
|
||||
unsupported for the given operator:
|
||||
|
||||
```py
|
||||
class Container:
|
||||
def __contains__(self, x) -> bool: ...
|
||||
|
||||
class NonContainer: ...
|
||||
|
||||
def get_object() -> object: ...
|
||||
|
||||
x = get_object()
|
||||
|
||||
if isinstance(x, Container):
|
||||
if not isinstance(x, NonContainer):
|
||||
reveal_type(x) # revealed: Container & ~NonContainer
|
||||
|
||||
# No error here!
|
||||
reveal_type(2 in x) # revealed: bool
|
||||
```
|
||||
@@ -5,9 +5,9 @@ Walking through examples:
|
||||
- `a = A() < B() < C()`
|
||||
|
||||
1. `A() < B() and B() < C()` - split in N comparison
|
||||
1. `A()` and `B()` - evaluate outcome types
|
||||
1. `bool` and `bool` - evaluate truthiness
|
||||
1. `A | B` - union of "first true" types
|
||||
1. `A()` and `B()` - evaluate outcome types
|
||||
1. `bool` and `bool` - evaluate truthiness
|
||||
1. `A | B` - union of "first true" types
|
||||
|
||||
- `b = 0 < 1 < A() < 3`
|
||||
|
||||
|
||||
@@ -59,51 +59,51 @@ reveal_type(c >= d) # revealed: Literal[True]
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool: ...
|
||||
def int_instance() -> int: ...
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
a = (bool_instance(),)
|
||||
b = (int_instance(),)
|
||||
|
||||
# TODO: All @Todo should be `bool`
|
||||
reveal_type(a == a) # revealed: @Todo
|
||||
reveal_type(a != a) # revealed: @Todo
|
||||
reveal_type(a < a) # revealed: @Todo
|
||||
reveal_type(a <= a) # revealed: @Todo
|
||||
reveal_type(a > a) # revealed: @Todo
|
||||
reveal_type(a >= a) # revealed: @Todo
|
||||
reveal_type(a == a) # revealed: bool
|
||||
reveal_type(a != a) # revealed: bool
|
||||
reveal_type(a < a) # revealed: bool
|
||||
reveal_type(a <= a) # revealed: bool
|
||||
reveal_type(a > a) # revealed: bool
|
||||
reveal_type(a >= a) # revealed: bool
|
||||
|
||||
reveal_type(a == b) # revealed: @Todo
|
||||
reveal_type(a != b) # revealed: @Todo
|
||||
reveal_type(a < b) # revealed: @Todo
|
||||
reveal_type(a <= b) # revealed: @Todo
|
||||
reveal_type(a > b) # revealed: @Todo
|
||||
reveal_type(a >= b) # revealed: @Todo
|
||||
reveal_type(a == b) # revealed: bool
|
||||
reveal_type(a != b) # revealed: bool
|
||||
reveal_type(a < b) # revealed: bool
|
||||
reveal_type(a <= b) # revealed: bool
|
||||
reveal_type(a > b) # revealed: bool
|
||||
reveal_type(a >= b) # revealed: bool
|
||||
```
|
||||
|
||||
#### Comparison Unsupported
|
||||
|
||||
If two tuples contain types that do not support comparison, the result may be `Unknown`.
|
||||
However, `==` and `!=` are exceptions and can still provide definite results.
|
||||
If two tuples contain types that do not support comparison, the result may be `Unknown`. However,
|
||||
`==` and `!=` are exceptions and can still provide definite results.
|
||||
|
||||
```py
|
||||
a = (1, 2)
|
||||
b = (1, "hello")
|
||||
|
||||
# TODO: should be Literal[False]
|
||||
reveal_type(a == b) # revealed: @Todo
|
||||
# TODO: should be Literal[False], once we implement (in)equality for mismatched literals
|
||||
reveal_type(a == b) # revealed: bool
|
||||
|
||||
# TODO: should be Literal[True]
|
||||
reveal_type(a != b) # revealed: @Todo
|
||||
# TODO: should be Literal[True], once we implement (in)equality for mismatched literals
|
||||
reveal_type(a != b) # revealed: bool
|
||||
|
||||
# TODO: should be Unknown and add more informative diagnostics
|
||||
reveal_type(a < b) # revealed: @Todo
|
||||
reveal_type(a <= b) # revealed: @Todo
|
||||
reveal_type(a > b) # revealed: @Todo
|
||||
reveal_type(a >= b) # revealed: @Todo
|
||||
reveal_type(a < b) # revealed: bool
|
||||
reveal_type(a <= b) # revealed: bool
|
||||
reveal_type(a > b) # revealed: bool
|
||||
reveal_type(a >= b) # revealed: bool
|
||||
```
|
||||
|
||||
However, if the lexicographic comparison completes without reaching a point where str and int are compared,
|
||||
Python will still produce a result based on the prior elements.
|
||||
However, if the lexicographic comparison completes without reaching a point where str and int are
|
||||
compared, Python will still produce a result based on the prior elements.
|
||||
|
||||
```py path=short_circuit.py
|
||||
a = (1, 2)
|
||||
@@ -145,13 +145,12 @@ class A:
|
||||
|
||||
a = (A(), A())
|
||||
|
||||
# TODO: All @Todo should be bool
|
||||
reveal_type(a == a) # revealed: @Todo
|
||||
reveal_type(a != a) # revealed: @Todo
|
||||
reveal_type(a < a) # revealed: @Todo
|
||||
reveal_type(a <= a) # revealed: @Todo
|
||||
reveal_type(a > a) # revealed: @Todo
|
||||
reveal_type(a >= a) # revealed: @Todo
|
||||
reveal_type(a == a) # revealed: bool
|
||||
reveal_type(a != a) # revealed: bool
|
||||
reveal_type(a < a) # revealed: bool
|
||||
reveal_type(a <= a) # revealed: bool
|
||||
reveal_type(a > a) # revealed: bool
|
||||
reveal_type(a >= a) # revealed: bool
|
||||
```
|
||||
|
||||
### Membership Test Comparisons
|
||||
@@ -159,7 +158,8 @@ reveal_type(a >= a) # revealed: @Todo
|
||||
"Membership Test Comparisons" refers to the operators `in` and `not in`.
|
||||
|
||||
```py
|
||||
def int_instance() -> int: ...
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
a = (1, 2)
|
||||
b = ((3, 4), (1, 2))
|
||||
@@ -172,9 +172,8 @@ reveal_type(a not in b) # revealed: Literal[False]
|
||||
reveal_type(a in c) # revealed: Literal[False]
|
||||
reveal_type(a not in c) # revealed: Literal[True]
|
||||
|
||||
# TODO: All @Todo should be bool
|
||||
reveal_type(a in d) # revealed: @Todo
|
||||
reveal_type(a not in d) # revealed: @Todo
|
||||
reveal_type(a in d) # revealed: bool
|
||||
reveal_type(a not in d) # revealed: bool
|
||||
```
|
||||
|
||||
### Identity Comparisons
|
||||
@@ -189,10 +188,10 @@ c = (1, 2, 3)
|
||||
reveal_type(a is (1, 2)) # revealed: bool
|
||||
reveal_type(a is not (1, 2)) # revealed: bool
|
||||
|
||||
# TODO: Update to Literal[False] once str == int comparison is implemented
|
||||
reveal_type(a is b) # revealed: @Todo
|
||||
# TODO: Update to Literal[True] once str == int comparison is implemented
|
||||
reveal_type(a is not b) # revealed: @Todo
|
||||
# TODO should be Literal[False] once we implement comparison of mismatched literal types
|
||||
reveal_type(a is b) # revealed: bool
|
||||
# TODO should be Literal[True] once we implement comparison of mismatched literal types
|
||||
reveal_type(a is not b) # revealed: bool
|
||||
|
||||
reveal_type(a is c) # revealed: Literal[False]
|
||||
reveal_type(a is not c) # revealed: Literal[True]
|
||||
|
||||
@@ -5,6 +5,10 @@
|
||||
Comparisons on union types need to consider all possible cases:
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
one_or_two = 1 if flag else 2
|
||||
|
||||
reveal_type(one_or_two <= 2) # revealed: Literal[True]
|
||||
@@ -48,10 +52,14 @@ reveal_type(one_or_none is not None) # revealed: bool
|
||||
|
||||
## Union on both sides of the comparison
|
||||
|
||||
With unions on both sides, we need to consider the full cross product of
|
||||
options when building the resulting (union) type:
|
||||
With unions on both sides, we need to consider the full cross product of options when building the
|
||||
resulting (union) type:
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag_s, flag_l = bool_instance(), bool_instance()
|
||||
small = 1 if flag_s else 2
|
||||
large = 2 if flag_l else 3
|
||||
|
||||
@@ -64,11 +72,15 @@ reveal_type(small > large) # revealed: Literal[False]
|
||||
|
||||
## Unsupported operations
|
||||
|
||||
Make sure we emit a diagnostic if *any* of the possible comparisons is
|
||||
unsupported. For now, we fall back to `bool` for the result type instead of
|
||||
trying to infer something more precise from the other (supported) variants:
|
||||
Make sure we emit a diagnostic if *any* of the possible comparisons is unsupported. For now, we fall
|
||||
back to `bool` for the result type instead of trying to infer something more precise from the other
|
||||
(supported) variants:
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = [1, 2] if flag else 1
|
||||
|
||||
result = 1 in x # error: "Operator `in` is not supported"
|
||||
|
||||
@@ -1,20 +1,28 @@
|
||||
# Comparison: Unsupported operators
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
a = 1 in 7 # error: "Operator `in` is not supported for types `Literal[1]` and `Literal[7]`"
|
||||
reveal_type(a) # revealed: bool
|
||||
|
||||
b = 0 not in 10 # error: "Operator `not in` is not supported for types `Literal[0]` and `Literal[10]`"
|
||||
reveal_type(b) # revealed: bool
|
||||
|
||||
c = object() < 5 # error: "Operator `<` is not supported for types `object` and `int`"
|
||||
reveal_type(c) # revealed: Unknown
|
||||
# TODO: should error, once operand type check is implemented
|
||||
# ("Operator `<` is not supported for types `object` and `int`")
|
||||
c = object() < 5
|
||||
# TODO: should be Unknown, once operand type check is implemented
|
||||
reveal_type(c) # revealed: bool
|
||||
|
||||
# TODO should error, need to check if __lt__ signature is valid for right operand
|
||||
# TODO: should error, once operand type check is implemented
|
||||
# ("Operator `<` is not supported for types `int` and `object`")
|
||||
d = 5 < object()
|
||||
# TODO: should be `Unknown`
|
||||
# TODO: should be Unknown, once operand type check is implemented
|
||||
reveal_type(d) # revealed: bool
|
||||
|
||||
flag = bool_instance()
|
||||
int_literal_or_str_literal = 1 if flag else "foo"
|
||||
# error: "Operator `in` is not supported for types `Literal[42]` and `Literal[1]`, in comparing `Literal[42]` with `Literal[1] | Literal["foo"]`"
|
||||
e = 42 in int_literal_or_str_literal
|
||||
@@ -23,5 +31,6 @@ reveal_type(e) # revealed: bool
|
||||
# TODO: should error, need to check if __lt__ signature is valid for right operand
|
||||
# error may be "Operator `<` is not supported for types `int` and `str`, in comparing `tuple[Literal[1], Literal[2]]` with `tuple[Literal[1], Literal["hello"]]`
|
||||
f = (1, 2) < (1, "hello")
|
||||
reveal_type(f) # revealed: @Todo
|
||||
# TODO: should be Unknown, once operand type check is implemented
|
||||
reveal_type(f) # revealed: bool
|
||||
```
|
||||
|
||||
@@ -3,6 +3,10 @@
|
||||
## Simple if-expression
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1 if flag else 2
|
||||
reveal_type(x) # revealed: Literal[1, 2]
|
||||
```
|
||||
@@ -10,6 +14,10 @@ reveal_type(x) # revealed: Literal[1, 2]
|
||||
## If-expression with walrus operator
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
y = 0
|
||||
z = 0
|
||||
x = (y := 1) if flag else (z := 2)
|
||||
@@ -21,6 +29,10 @@ reveal_type(z) # revealed: Literal[0, 2]
|
||||
## Nested if-expression
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
x = 1 if flag else 2 if flag2 else 3
|
||||
reveal_type(x) # revealed: Literal[1, 2, 3]
|
||||
```
|
||||
@@ -28,6 +40,10 @@ reveal_type(x) # revealed: Literal[1, 2, 3]
|
||||
## None
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1 if flag else None
|
||||
reveal_type(x) # revealed: Literal[1] | None
|
||||
```
|
||||
|
||||
@@ -3,6 +3,10 @@
|
||||
## Simple if
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
y = 1
|
||||
y = 2
|
||||
|
||||
@@ -15,6 +19,10 @@ reveal_type(y) # revealed: Literal[2, 3]
|
||||
## Simple if-elif-else
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
y = 1
|
||||
y = 2
|
||||
if flag:
|
||||
@@ -28,13 +36,24 @@ else:
|
||||
x = y
|
||||
|
||||
reveal_type(x) # revealed: Literal[3, 4, 5]
|
||||
reveal_type(r) # revealed: Unbound | Literal[2]
|
||||
reveal_type(s) # revealed: Unbound | Literal[5]
|
||||
|
||||
# revealed: Literal[2]
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(r)
|
||||
|
||||
# revealed: Literal[5]
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(s)
|
||||
```
|
||||
|
||||
## Single symbol across if-elif-else
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
|
||||
if flag:
|
||||
y = 1
|
||||
elif flag2:
|
||||
@@ -47,6 +66,10 @@ reveal_type(y) # revealed: Literal[1, 2, 3]
|
||||
## if-elif-else without else assignment
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
y = 0
|
||||
if flag:
|
||||
y = 1
|
||||
@@ -60,6 +83,10 @@ reveal_type(y) # revealed: Literal[0, 1, 2]
|
||||
## if-elif-else with intervening assignment
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
y = 0
|
||||
if flag:
|
||||
y = 1
|
||||
@@ -74,6 +101,10 @@ reveal_type(y) # revealed: Literal[0, 1, 2]
|
||||
## Nested if statement
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
y = 0
|
||||
if flag:
|
||||
if flag2:
|
||||
@@ -84,6 +115,10 @@ reveal_type(y) # revealed: Literal[0, 1]
|
||||
## if-elif without else
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
y = 1
|
||||
y = 2
|
||||
if flag:
|
||||
|
||||
@@ -21,7 +21,9 @@ match 0:
|
||||
case 2:
|
||||
y = 3
|
||||
|
||||
reveal_type(y) # revealed: Unbound | Literal[2, 3]
|
||||
# revealed: Literal[2, 3]
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(y)
|
||||
```
|
||||
|
||||
## Basic match
|
||||
|
||||
@@ -10,6 +10,10 @@ x: str # error: [invalid-declaration] "Cannot declare type `str` for inferred t
|
||||
## Incompatible declarations
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
if flag:
|
||||
x: str
|
||||
else:
|
||||
@@ -20,6 +24,10 @@ x = 1 # error: [conflicting-declarations] "Conflicting declared types for `x`:
|
||||
## Partial declarations
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
if flag:
|
||||
x: int
|
||||
x = 1 # error: [conflicting-declarations] "Conflicting declared types for `x`: Unknown, int"
|
||||
@@ -28,6 +36,10 @@ x = 1 # error: [conflicting-declarations] "Conflicting declared types for `x`:
|
||||
## Incompatible declarations with bad assignment
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
if flag:
|
||||
x: str
|
||||
else:
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
import re
|
||||
|
||||
try:
|
||||
x
|
||||
help()
|
||||
except NameError as e:
|
||||
reveal_type(e) # revealed: NameError
|
||||
except re.error as f:
|
||||
@@ -19,7 +19,7 @@ except re.error as f:
|
||||
from nonexistent_module import foo # error: [unresolved-import]
|
||||
|
||||
try:
|
||||
x
|
||||
help()
|
||||
except foo as e:
|
||||
reveal_type(foo) # revealed: Unknown
|
||||
reveal_type(e) # revealed: Unknown
|
||||
@@ -31,7 +31,7 @@ except foo as e:
|
||||
EXCEPTIONS = (AttributeError, TypeError)
|
||||
|
||||
try:
|
||||
x
|
||||
help()
|
||||
except (RuntimeError, OSError) as e:
|
||||
reveal_type(e) # revealed: RuntimeError | OSError
|
||||
except EXCEPTIONS as f:
|
||||
@@ -41,9 +41,14 @@ except EXCEPTIONS as f:
|
||||
## Dynamic exception types
|
||||
|
||||
```py
|
||||
def foo(x: type[AttributeError], y: tuple[type[OSError], type[RuntimeError]], z: tuple[type[BaseException], ...]):
|
||||
# TODO: we should not emit these `call-possibly-unbound-method` errors for `tuple.__class_getitem__`
|
||||
def foo(
|
||||
x: type[AttributeError],
|
||||
y: tuple[type[OSError], type[RuntimeError]], # error: [call-possibly-unbound-method]
|
||||
z: tuple[type[BaseException], ...], # error: [call-possibly-unbound-method]
|
||||
):
|
||||
try:
|
||||
w
|
||||
help()
|
||||
except x as e:
|
||||
# TODO: should be `AttributeError`
|
||||
reveal_type(e) # revealed: @Todo
|
||||
|
||||
@@ -1,40 +1,33 @@
|
||||
# Control flow for exception handlers
|
||||
|
||||
These tests assert that we understand the possible "definition states" (which
|
||||
symbols might or might not be defined) in the various branches of a
|
||||
`try`/`except`/`else`/`finally` block.
|
||||
These tests assert that we understand the possible "definition states" (which symbols might or might
|
||||
not be defined) in the various branches of a `try`/`except`/`else`/`finally` block.
|
||||
|
||||
For a full writeup on the semantics of exception handlers,
|
||||
see [this document][1].
|
||||
For a full writeup on the semantics of exception handlers, see [this document][1].
|
||||
|
||||
The tests throughout this Markdown document use functions with names starting
|
||||
with `could_raise_*` to mark definitions that might or might not succeed
|
||||
(as the function could raise an exception). A type checker must assume that any
|
||||
arbitrary function call could raise an exception in Python; this is just a
|
||||
naming convention used in these tests for clarity, and to future-proof the
|
||||
tests against possible future improvements whereby certain statements or
|
||||
expressions could potentially be inferred as being incapable of causing an
|
||||
exception to be raised.
|
||||
The tests throughout this Markdown document use functions with names starting with `could_raise_*`
|
||||
to mark definitions that might or might not succeed (as the function could raise an exception). A
|
||||
type checker must assume that any arbitrary function call could raise an exception in Python; this
|
||||
is just a naming convention used in these tests for clarity, and to future-proof the tests against
|
||||
possible future improvements whereby certain statements or expressions could potentially be inferred
|
||||
as being incapable of causing an exception to be raised.
|
||||
|
||||
## A single bare `except`
|
||||
|
||||
Consider the following `try`/`except` block, with a single bare `except:`.
|
||||
There are different types for the variable `x` in the two branches of this
|
||||
block, and we can't determine which branch might have been taken from the
|
||||
perspective of code following this block. The inferred type after the block's
|
||||
conclusion is therefore the union of the type at the end of the `try` suite
|
||||
(`str`) and the type at the end of the `except` suite (`Literal[2]`).
|
||||
Consider the following `try`/`except` block, with a single bare `except:`. There are different types
|
||||
for the variable `x` in the two branches of this block, and we can't determine which branch might
|
||||
have been taken from the perspective of code following this block. The inferred type after the
|
||||
block's conclusion is therefore the union of the type at the end of the `try` suite (`str`) and the
|
||||
type at the end of the `except` suite (`Literal[2]`).
|
||||
|
||||
*Within* the `except` suite, we must infer a union of all possible "definition
|
||||
states" we could have been in at any point during the `try` suite. This is
|
||||
because control flow could have jumped to the `except` suite without any of the
|
||||
`try`-suite definitions successfully completing, with only *some* of the
|
||||
`try`-suite definitions successfully completing, or indeed with *all* of them
|
||||
successfully completing. The type of `x` at the beginning of the `except` suite
|
||||
in this example is therefore `Literal[1] | str`, taking into account that we
|
||||
might have jumped to the `except` suite before the
|
||||
`x = could_raise_returns_str()` redefinition, but we *also* could have jumped
|
||||
to the `except` suite *after* that redefinition.
|
||||
*Within* the `except` suite, we must infer a union of all possible "definition states" we could have
|
||||
been in at any point during the `try` suite. This is because control flow could have jumped to the
|
||||
`except` suite without any of the `try`-suite definitions successfully completing, with only *some*
|
||||
of the `try`-suite definitions successfully completing, or indeed with *all* of them successfully
|
||||
completing. The type of `x` at the beginning of the `except` suite in this example is therefore
|
||||
`Literal[1] | str`, taking into account that we might have jumped to the `except` suite before the
|
||||
`x = could_raise_returns_str()` redefinition, but we *also* could have jumped to the `except` suite
|
||||
*after* that redefinition.
|
||||
|
||||
```py path=union_type_inferred.py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -54,9 +47,8 @@ except:
|
||||
reveal_type(x) # revealed: str | Literal[2]
|
||||
```
|
||||
|
||||
If `x` has the same type at the end of both branches, however, the branches
|
||||
unify and `x` is not inferred as having a union type following the
|
||||
`try`/`except` block:
|
||||
If `x` has the same type at the end of both branches, however, the branches unify and `x` is not
|
||||
inferred as having a union type following the `try`/`except` block:
|
||||
|
||||
```py path=branches_unify_to_non_union_type.py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -74,13 +66,12 @@ reveal_type(x) # revealed: str
|
||||
|
||||
## A non-bare `except`
|
||||
|
||||
For simple `try`/`except` blocks, an `except TypeError:` handler has the same
|
||||
control flow semantics as an `except:` handler. An `except TypeError:` handler
|
||||
will not catch *all* exceptions: if this is the only handler, it opens up the
|
||||
possibility that an exception might occur that would not be handled. However,
|
||||
as described in [the document on exception-handling semantics][1], that would
|
||||
lead to termination of the scope. It's therefore irrelevant to consider this
|
||||
possibility when it comes to control-flow analysis.
|
||||
For simple `try`/`except` blocks, an `except TypeError:` handler has the same control flow semantics
|
||||
as an `except:` handler. An `except TypeError:` handler will not catch *all* exceptions: if this is
|
||||
the only handler, it opens up the possibility that an exception might occur that would not be
|
||||
handled. However, as described in [the document on exception-handling semantics][1], that would lead
|
||||
to termination of the scope. It's therefore irrelevant to consider this possibility when it comes to
|
||||
control-flow analysis.
|
||||
|
||||
```py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -102,11 +93,9 @@ reveal_type(x) # revealed: str | Literal[2]
|
||||
|
||||
## Multiple `except` branches
|
||||
|
||||
If the scope reaches the final `reveal_type` call in this example,
|
||||
either the `try`-block suite of statements was executed in its entirety,
|
||||
or exactly one `except` suite was executed in its entirety.
|
||||
The inferred type of `x` at this point is the union of the types at the end of
|
||||
the three suites:
|
||||
If the scope reaches the final `reveal_type` call in this example, either the `try`-block suite of
|
||||
statements was executed in its entirety, or exactly one `except` suite was executed in its entirety.
|
||||
The inferred type of `x` at this point is the union of the types at the end of the three suites:
|
||||
|
||||
- At the end of `try`, `type(x) == str`
|
||||
- At the end of `except TypeError`, `x == 2`
|
||||
@@ -136,11 +125,10 @@ reveal_type(x) # revealed: str | Literal[2, 3]
|
||||
|
||||
## Exception handlers with `else` branches (but no `finally`)
|
||||
|
||||
If we reach the `reveal_type` call at the end of this scope,
|
||||
either the `try` and `else` suites were both executed in their entireties,
|
||||
or the `except` suite was executed in its entirety. The type of `x` at this
|
||||
point is the union of the type at the end of the `else` suite and the type at
|
||||
the end of the `except` suite:
|
||||
If we reach the `reveal_type` call at the end of this scope, either the `try` and `else` suites were
|
||||
both executed in their entireties, or the `except` suite was executed in its entirety. The type of
|
||||
`x` at this point is the union of the type at the end of the `else` suite and the type at the end of
|
||||
the `except` suite:
|
||||
|
||||
- At the end of `else`, `x == 3`
|
||||
- At the end of `except`, `x == 2`
|
||||
@@ -167,10 +155,9 @@ else:
|
||||
reveal_type(x) # revealed: Literal[2, 3]
|
||||
```
|
||||
|
||||
For a block that has multiple `except` branches and an `else` branch, the same
|
||||
principle applies. In order to reach the final `reveal_type` call,
|
||||
either exactly one of the `except` suites must have been executed in its
|
||||
entirety, or the `try` suite and the `else` suite must both have been executed
|
||||
For a block that has multiple `except` branches and an `else` branch, the same principle applies. In
|
||||
order to reach the final `reveal_type` call, either exactly one of the `except` suites must have
|
||||
been executed in its entirety, or the `try` suite and the `else` suite must both have been executed
|
||||
in their entireties:
|
||||
|
||||
```py
|
||||
@@ -201,10 +188,9 @@ reveal_type(x) # revealed: Literal[2, 3, 4]
|
||||
|
||||
## Exception handlers with `finally` branches (but no `except` branches)
|
||||
|
||||
A `finally` suite is *always* executed. As such, if we reach the `reveal_type`
|
||||
call at the end of this example, we know that `x` *must* have been reassigned
|
||||
to `2` during the `finally` suite. The type of `x` at the end of the example is
|
||||
therefore `Literal[2]`:
|
||||
A `finally` suite is *always* executed. As such, if we reach the `reveal_type` call at the end of
|
||||
this example, we know that `x` *must* have been reassigned to `2` during the `finally` suite. The
|
||||
type of `x` at the end of the example is therefore `Literal[2]`:
|
||||
|
||||
```py path=redef_in_finally.py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -223,15 +209,13 @@ finally:
|
||||
reveal_type(x) # revealed: Literal[2]
|
||||
```
|
||||
|
||||
If `x` was *not* redefined in the `finally` suite, however, things are somewhat
|
||||
more complicated. If we reach the final `reveal_type` call,
|
||||
unlike the state when we're visiting the `finally` suite,
|
||||
we know that the `try`-block suite ran to completion.
|
||||
This means that there are fewer possible states at this point than there were
|
||||
when we were inside the `finally` block.
|
||||
If `x` was *not* redefined in the `finally` suite, however, things are somewhat more complicated. If
|
||||
we reach the final `reveal_type` call, unlike the state when we're visiting the `finally` suite, we
|
||||
know that the `try`-block suite ran to completion. This means that there are fewer possible states
|
||||
at this point than there were when we were inside the `finally` block.
|
||||
|
||||
(Our current model does *not* correctly infer the types *inside* `finally`
|
||||
suites, however; this is still a TODO item for us.)
|
||||
(Our current model does *not* correctly infer the types *inside* `finally` suites, however; this is
|
||||
still a TODO item for us.)
|
||||
|
||||
```py path=no_redef_in_finally.py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -252,18 +236,18 @@ reveal_type(x) # revealed: str
|
||||
|
||||
## Combining an `except` branch with a `finally` branch
|
||||
|
||||
As previously stated, we do not yet have accurate inference for types *inside*
|
||||
`finally` suites. When we do, however, we will have to take account of the
|
||||
following possibilities inside `finally` suites:
|
||||
As previously stated, we do not yet have accurate inference for types *inside* `finally` suites.
|
||||
When we do, however, we will have to take account of the following possibilities inside `finally`
|
||||
suites:
|
||||
|
||||
- The `try` suite could have run to completion
|
||||
- Or we could have jumped from halfway through the `try` suite to an `except`
|
||||
suite, and the `except` suite ran to completion
|
||||
- Or we could have jumped from halfway through the `try` suite straight to the
|
||||
`finally` suite due to an unhandled exception
|
||||
- Or we could have jumped from halfway through the `try` suite to an
|
||||
`except` suite, only for an exception raised in the `except` suite to cause
|
||||
us to jump to the `finally` suite before the `except` suite ran to completion
|
||||
- Or we could have jumped from halfway through the `try` suite to an `except` suite, and the
|
||||
`except` suite ran to completion
|
||||
- Or we could have jumped from halfway through the `try` suite straight to the `finally` suite due
|
||||
to an unhandled exception
|
||||
- Or we could have jumped from halfway through the `try` suite to an `except` suite, only for an
|
||||
exception raised in the `except` suite to cause us to jump to the `finally` suite before the
|
||||
`except` suite ran to completion
|
||||
|
||||
```py path=redef_in_finally.py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -296,12 +280,11 @@ finally:
|
||||
reveal_type(x) # revealed: Literal[2]
|
||||
```
|
||||
|
||||
Now for an example without a redefinition in the `finally` suite.
|
||||
As before, there *should* be fewer possibilities after completion of the
|
||||
`finally` suite than there were during the `finally` suite itself.
|
||||
(In some control-flow possibilities, some exceptions were merely *suspended*
|
||||
during the `finally` suite; these lead to the scope's termination following the
|
||||
conclusion of the `finally` suite.)
|
||||
Now for an example without a redefinition in the `finally` suite. As before, there *should* be fewer
|
||||
possibilities after completion of the `finally` suite than there were during the `finally` suite
|
||||
itself. (In some control-flow possibilities, some exceptions were merely *suspended* during the
|
||||
`finally` suite; these lead to the scope's termination following the conclusion of the `finally`
|
||||
suite.)
|
||||
|
||||
```py path=no_redef_in_finally.py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -377,9 +360,9 @@ reveal_type(x) # revealed: str | bool | float
|
||||
|
||||
## Combining `except`, `else` and `finally` branches
|
||||
|
||||
If the exception handler has an `else` branch, we must also take into account
|
||||
the possibility that control flow could have jumped to the `finally` suite from
|
||||
partway through the `else` suite due to an exception raised *there*.
|
||||
If the exception handler has an `else` branch, we must also take into account the possibility that
|
||||
control flow could have jumped to the `finally` suite from partway through the `else` suite due to
|
||||
an exception raised *there*.
|
||||
|
||||
```py path=single_except_branch.py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -479,15 +462,13 @@ reveal_type(x) # revealed: bool | float | slice
|
||||
|
||||
## Nested `try`/`except` blocks
|
||||
|
||||
It would take advanced analysis, which we are not yet capable of, to be able
|
||||
to determine that an exception handler always suppresses all exceptions. This
|
||||
is partly because it is possible for statements in `except`, `else` and
|
||||
`finally` suites to raise exceptions as well as statements in `try` suites.
|
||||
This means that if an exception handler is nested inside the `try` statement of
|
||||
an enclosing exception handler, it should (at least for now) be treated the
|
||||
same as any other node: as a suite containing statements that could possibly
|
||||
raise exceptions, which would lead to control flow jumping out of that suite
|
||||
prior to the suite running to completion.
|
||||
It would take advanced analysis, which we are not yet capable of, to be able to determine that an
|
||||
exception handler always suppresses all exceptions. This is partly because it is possible for
|
||||
statements in `except`, `else` and `finally` suites to raise exceptions as well as statements in
|
||||
`try` suites. This means that if an exception handler is nested inside the `try` statement of an
|
||||
enclosing exception handler, it should (at least for now) be treated the same as any other node: as
|
||||
a suite containing statements that could possibly raise exceptions, which would lead to control flow
|
||||
jumping out of that suite prior to the suite running to completion.
|
||||
|
||||
```py
|
||||
def could_raise_returns_str() -> str:
|
||||
@@ -580,8 +561,8 @@ reveal_type(x) # revealed: bytearray | Bar
|
||||
|
||||
## Nested scopes inside `try` blocks
|
||||
|
||||
Shadowing a variable in an inner scope has no effect on type inference of the
|
||||
variable by that name in the outer scope:
|
||||
Shadowing a variable in an inner scope has no effect on type inference of the variable by that name
|
||||
in the outer scope:
|
||||
|
||||
```py
|
||||
def could_raise_returns_str() -> str:
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
```py
|
||||
try:
|
||||
x
|
||||
help()
|
||||
except* BaseException as e:
|
||||
reveal_type(e) # revealed: BaseExceptionGroup
|
||||
```
|
||||
@@ -13,7 +13,7 @@ except* BaseException as e:
|
||||
|
||||
```py
|
||||
try:
|
||||
x
|
||||
help()
|
||||
except* OSError as e:
|
||||
# TODO(Alex): more precise would be `ExceptionGroup[OSError]`
|
||||
reveal_type(e) # revealed: BaseExceptionGroup
|
||||
@@ -23,7 +23,7 @@ except* OSError as e:
|
||||
|
||||
```py
|
||||
try:
|
||||
x
|
||||
help()
|
||||
except* (TypeError, AttributeError) as e:
|
||||
# TODO(Alex): more precise would be `ExceptionGroup[TypeError | AttributeError]`.
|
||||
reveal_type(e) # revealed: BaseExceptionGroup
|
||||
|
||||
@@ -0,0 +1,13 @@
|
||||
# Exception Handling
|
||||
|
||||
## Invalid syntax
|
||||
|
||||
```py
|
||||
from typing_extensions import reveal_type
|
||||
|
||||
try:
|
||||
print
|
||||
except as e: # error: [invalid-syntax]
|
||||
reveal_type(e) # revealed: Unknown
|
||||
|
||||
```
|
||||
@@ -0,0 +1,24 @@
|
||||
# If expression
|
||||
|
||||
## Union
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
reveal_type(1 if bool_instance() else 2) # revealed: Literal[1, 2]
|
||||
```
|
||||
|
||||
## Statically known branches
|
||||
|
||||
```py
|
||||
reveal_type(1 if True else 2) # revealed: Literal[1]
|
||||
reveal_type(1 if "not empty" else 2) # revealed: Literal[1]
|
||||
reveal_type(1 if (1,) else 2) # revealed: Literal[1]
|
||||
reveal_type(1 if 1 else 2) # revealed: Literal[1]
|
||||
|
||||
reveal_type(1 if False else 2) # revealed: Literal[2]
|
||||
reveal_type(1 if None else 2) # revealed: Literal[2]
|
||||
reveal_type(1 if "" else 2) # revealed: Literal[2]
|
||||
reveal_type(1 if 0 else 2) # revealed: Literal[2]
|
||||
```
|
||||
@@ -6,16 +6,21 @@ Basic PEP 695 generics
|
||||
|
||||
```py
|
||||
class MyBox[T]:
|
||||
# TODO: `T` is defined here
|
||||
# error: [unresolved-reference] "Name `T` used when not defined"
|
||||
data: T
|
||||
box_model_number = 695
|
||||
|
||||
# TODO: `T` is defined here
|
||||
# error: [unresolved-reference] "Name `T` used when not defined"
|
||||
def __init__(self, data: T):
|
||||
self.data = data
|
||||
|
||||
# TODO not error (should be subscriptable)
|
||||
box: MyBox[int] = MyBox(5) # error: [non-subscriptable]
|
||||
# TODO error differently (str and int don't unify)
|
||||
wrong_innards: MyBox[int] = MyBox("five") # error: [non-subscriptable]
|
||||
box: MyBox[int] = MyBox(5)
|
||||
|
||||
# TODO should emit a diagnostic here (str is not assignable to int)
|
||||
wrong_innards: MyBox[int] = MyBox("five")
|
||||
|
||||
# TODO reveal int
|
||||
reveal_type(box.data) # revealed: @Todo
|
||||
|
||||
@@ -26,13 +31,19 @@ reveal_type(MyBox.box_model_number) # revealed: Literal[695]
|
||||
|
||||
```py
|
||||
class MyBox[T]:
|
||||
# TODO: `T` is defined here
|
||||
# error: [unresolved-reference] "Name `T` used when not defined"
|
||||
data: T
|
||||
|
||||
# TODO: `T` is defined here
|
||||
# error: [unresolved-reference] "Name `T` used when not defined"
|
||||
def __init__(self, data: T):
|
||||
self.data = data
|
||||
|
||||
# TODO not error on the subscripting
|
||||
class MySecureBox[T](MyBox[T]): ... # error: [non-subscriptable]
|
||||
# TODO not error on the subscripting or the use of type param
|
||||
# error: [unresolved-reference] "Name `T` used when not defined"
|
||||
# error: [non-subscriptable]
|
||||
class MySecureBox[T](MyBox[T]): ...
|
||||
|
||||
secure_box: MySecureBox[int] = MySecureBox(5)
|
||||
reveal_type(secure_box) # revealed: MySecureBox
|
||||
@@ -42,7 +53,8 @@ reveal_type(secure_box.data) # revealed: @Todo
|
||||
|
||||
## Cyclical class definition
|
||||
|
||||
In type stubs, classes can reference themselves in their base class definitions. For example, in `typeshed`, we have `class str(Sequence[str]): ...`.
|
||||
In type stubs, classes can reference themselves in their base class definitions. For example, in
|
||||
`typeshed`, we have `class str(Sequence[str]): ...`.
|
||||
|
||||
This should hold true even with generics at play.
|
||||
|
||||
|
||||
@@ -3,11 +3,21 @@
|
||||
## Maybe unbound
|
||||
|
||||
```py path=maybe_unbound.py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
if flag:
|
||||
y = 3
|
||||
x = y
|
||||
reveal_type(x) # revealed: Unbound | Literal[3]
|
||||
reveal_type(y) # revealed: Unbound | Literal[3]
|
||||
|
||||
x = y # error: [possibly-unresolved-reference]
|
||||
|
||||
# revealed: Literal[3]
|
||||
reveal_type(x)
|
||||
|
||||
# revealed: Literal[3]
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(y)
|
||||
```
|
||||
|
||||
```py
|
||||
@@ -20,11 +30,21 @@ reveal_type(y) # revealed: Literal[3]
|
||||
## Maybe unbound annotated
|
||||
|
||||
```py path=maybe_unbound_annotated.py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
if flag:
|
||||
y: int = 3
|
||||
x = y
|
||||
reveal_type(x) # revealed: Unbound | Literal[3]
|
||||
reveal_type(y) # revealed: Unbound | Literal[3]
|
||||
x = y # error: [possibly-unresolved-reference]
|
||||
|
||||
# revealed: Literal[3]
|
||||
reveal_type(x)
|
||||
|
||||
# revealed: Literal[3]
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(y)
|
||||
```
|
||||
|
||||
Importing an annotated name prefers the declared type over the inferred type:
|
||||
@@ -36,6 +56,24 @@ reveal_type(x) # revealed: Literal[3]
|
||||
reveal_type(y) # revealed: int
|
||||
```
|
||||
|
||||
## Maybe undeclared
|
||||
|
||||
Importing a possibly undeclared name still gives us its declared type:
|
||||
|
||||
```py path=maybe_undeclared.py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
if bool_instance():
|
||||
x: int
|
||||
```
|
||||
|
||||
```py
|
||||
from maybe_undeclared import x
|
||||
|
||||
reveal_type(x) # revealed: int
|
||||
```
|
||||
|
||||
## Reimport
|
||||
|
||||
```py path=c.py
|
||||
@@ -43,6 +81,10 @@ def f(): ...
|
||||
```
|
||||
|
||||
```py path=b.py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
if flag:
|
||||
from c import f
|
||||
else:
|
||||
@@ -67,6 +109,10 @@ x: int
|
||||
```
|
||||
|
||||
```py path=b.py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
if flag:
|
||||
from c import x
|
||||
else:
|
||||
|
||||
@@ -102,7 +102,7 @@ reveal_type(X) # revealed: Literal[42]
|
||||
```
|
||||
|
||||
```py path=package/foo.py
|
||||
x
|
||||
x # error: [unresolved-reference]
|
||||
```
|
||||
|
||||
```py path=package/bar.py
|
||||
|
||||
@@ -0,0 +1,91 @@
|
||||
# Literal
|
||||
|
||||
<https://typing.readthedocs.io/en/latest/spec/literal.html#literals>
|
||||
|
||||
## Parameterization
|
||||
|
||||
```py
|
||||
from typing import Literal
|
||||
from enum import Enum
|
||||
|
||||
mode: Literal["w", "r"]
|
||||
mode2: Literal["w"] | Literal["r"]
|
||||
union_var: Literal[Literal[Literal[1, 2, 3], "foo"], 5, None]
|
||||
a1: Literal[26]
|
||||
a2: Literal[0x1A]
|
||||
a3: Literal[-4]
|
||||
a4: Literal["hello world"]
|
||||
a5: Literal[b"hello world"]
|
||||
a6: Literal[True]
|
||||
a7: Literal[None]
|
||||
a8: Literal[Literal[1]]
|
||||
a9: Literal[Literal["w"], Literal["r"], Literal[Literal["w+"]]]
|
||||
|
||||
class Color(Enum):
|
||||
RED = 0
|
||||
GREEN = 1
|
||||
BLUE = 2
|
||||
|
||||
b1: Literal[Color.RED]
|
||||
|
||||
def f():
|
||||
reveal_type(mode) # revealed: Literal["w", "r"]
|
||||
reveal_type(mode2) # revealed: Literal["w", "r"]
|
||||
# TODO: should be revealed: Literal[1, 2, 3, "foo", 5] | None
|
||||
reveal_type(union_var) # revealed: Literal[1, 2, 3, 5] | Literal["foo"] | None
|
||||
reveal_type(a1) # revealed: Literal[26]
|
||||
reveal_type(a2) # revealed: Literal[26]
|
||||
reveal_type(a3) # revealed: Literal[-4]
|
||||
reveal_type(a4) # revealed: Literal["hello world"]
|
||||
reveal_type(a5) # revealed: Literal[b"hello world"]
|
||||
reveal_type(a6) # revealed: Literal[True]
|
||||
reveal_type(a7) # revealed: None
|
||||
reveal_type(a8) # revealed: Literal[1]
|
||||
reveal_type(a9) # revealed: Literal["w", "r", "w+"]
|
||||
# TODO: This should be Color.RED
|
||||
reveal_type(b1) # revealed: Literal[0]
|
||||
|
||||
# error: [invalid-literal-parameter]
|
||||
invalid1: Literal[3 + 4]
|
||||
# error: [invalid-literal-parameter]
|
||||
invalid2: Literal[4 + 3j]
|
||||
# error: [invalid-literal-parameter]
|
||||
invalid3: Literal[(3, 4)]
|
||||
invalid4: Literal[
|
||||
1 + 2, # error: [invalid-literal-parameter]
|
||||
"foo",
|
||||
hello, # error: [invalid-literal-parameter]
|
||||
(1, 2, 3), # error: [invalid-literal-parameter]
|
||||
]
|
||||
```
|
||||
|
||||
## Detecting Literal outside typing and typing_extensions
|
||||
|
||||
Only Literal that is defined in typing and typing_extension modules is detected as the special
|
||||
Literal.
|
||||
|
||||
```pyi path=other.pyi
|
||||
from typing import _SpecialForm
|
||||
|
||||
Literal: _SpecialForm
|
||||
```
|
||||
|
||||
```py
|
||||
from other import Literal
|
||||
|
||||
a1: Literal[26]
|
||||
|
||||
def f():
|
||||
reveal_type(a1) # revealed: @Todo
|
||||
```
|
||||
|
||||
## Detecting typing_extensions.Literal
|
||||
|
||||
```py
|
||||
from typing_extensions import Literal
|
||||
|
||||
a1: Literal[26]
|
||||
|
||||
def f():
|
||||
reveal_type(a1) # revealed: Literal[26]
|
||||
```
|
||||
@@ -17,8 +17,10 @@ async def foo():
|
||||
async for x in Iterator():
|
||||
pass
|
||||
|
||||
# TODO
|
||||
reveal_type(x) # revealed: Unbound | @Todo
|
||||
# TODO: should reveal `Unknown` because `__aiter__` is not defined
|
||||
# revealed: @Todo
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x)
|
||||
```
|
||||
|
||||
## Basic async for loop
|
||||
@@ -37,5 +39,7 @@ async def foo():
|
||||
async for x in IntAsyncIterable():
|
||||
pass
|
||||
|
||||
reveal_type(x) # revealed: Unbound | @Todo
|
||||
# error: [possibly-unresolved-reference]
|
||||
# revealed: @Todo
|
||||
reveal_type(x)
|
||||
```
|
||||
|
||||
@@ -14,7 +14,9 @@ class IntIterable:
|
||||
for x in IntIterable():
|
||||
pass
|
||||
|
||||
reveal_type(x) # revealed: Unbound | int
|
||||
# revealed: int
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x)
|
||||
```
|
||||
|
||||
## With previous definition
|
||||
@@ -85,7 +87,9 @@ class OldStyleIterable:
|
||||
for x in OldStyleIterable():
|
||||
pass
|
||||
|
||||
reveal_type(x) # revealed: Unbound | int
|
||||
# revealed: int
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x)
|
||||
```
|
||||
|
||||
## With heterogeneous tuple
|
||||
@@ -94,12 +98,19 @@ reveal_type(x) # revealed: Unbound | int
|
||||
for x in (1, "a", b"foo"):
|
||||
pass
|
||||
|
||||
reveal_type(x) # revealed: Unbound | Literal[1] | Literal["a"] | Literal[b"foo"]
|
||||
# revealed: Literal[1] | Literal["a"] | Literal[b"foo"]
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x)
|
||||
```
|
||||
|
||||
## With non-callable iterator
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
class NotIterable:
|
||||
if flag:
|
||||
__iter__ = 1
|
||||
@@ -109,7 +120,9 @@ class NotIterable:
|
||||
for x in NotIterable(): # error: "Object of type `NotIterable` is not iterable"
|
||||
pass
|
||||
|
||||
reveal_type(x) # revealed: Unbound | Unknown
|
||||
# revealed: Unknown
|
||||
# error: [possibly-unresolved-reference]
|
||||
reveal_type(x)
|
||||
```
|
||||
|
||||
## Invalid iterable
|
||||
@@ -131,3 +144,140 @@ class NotIterable:
|
||||
for x in NotIterable(): # error: "Object of type `NotIterable` is not iterable"
|
||||
pass
|
||||
```
|
||||
|
||||
## Union type as iterable
|
||||
|
||||
```py
|
||||
class TestIter:
|
||||
def __next__(self) -> int:
|
||||
return 42
|
||||
|
||||
class Test:
|
||||
def __iter__(self) -> TestIter:
|
||||
return TestIter()
|
||||
|
||||
class Test2:
|
||||
def __iter__(self) -> TestIter:
|
||||
return TestIter()
|
||||
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
for x in Test() if flag else Test2():
|
||||
reveal_type(x) # revealed: int
|
||||
```
|
||||
|
||||
## Union type as iterator
|
||||
|
||||
```py
|
||||
class TestIter:
|
||||
def __next__(self) -> int:
|
||||
return 42
|
||||
|
||||
class TestIter2:
|
||||
def __next__(self) -> int:
|
||||
return 42
|
||||
|
||||
class Test:
|
||||
def __iter__(self) -> TestIter | TestIter2:
|
||||
return TestIter()
|
||||
|
||||
for x in Test():
|
||||
reveal_type(x) # revealed: int
|
||||
```
|
||||
|
||||
## Union type as iterable and union type as iterator
|
||||
|
||||
```py
|
||||
class TestIter:
|
||||
def __next__(self) -> int | Exception:
|
||||
return 42
|
||||
|
||||
class TestIter2:
|
||||
def __next__(self) -> str | tuple[int, int]:
|
||||
return "42"
|
||||
|
||||
class TestIter3:
|
||||
def __next__(self) -> bytes:
|
||||
return b"42"
|
||||
|
||||
class TestIter4:
|
||||
def __next__(self) -> memoryview:
|
||||
return memoryview(b"42")
|
||||
|
||||
class Test:
|
||||
def __iter__(self) -> TestIter | TestIter2:
|
||||
return TestIter()
|
||||
|
||||
class Test2:
|
||||
def __iter__(self) -> TestIter3 | TestIter4:
|
||||
return TestIter3()
|
||||
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
for x in Test() if flag else Test2():
|
||||
reveal_type(x) # revealed: int | Exception | str | tuple[int, int] | bytes | memoryview
|
||||
```
|
||||
|
||||
## Union type as iterable where one union element has no `__iter__` method
|
||||
|
||||
```py
|
||||
class TestIter:
|
||||
def __next__(self) -> int:
|
||||
return 42
|
||||
|
||||
class Test:
|
||||
def __iter__(self) -> TestIter:
|
||||
return TestIter()
|
||||
|
||||
def coinflip() -> bool:
|
||||
return True
|
||||
|
||||
# error: [not-iterable] "Object of type `Test | Literal[42]` is not iterable because its `__iter__` method is possibly unbound"
|
||||
for x in Test() if coinflip() else 42:
|
||||
reveal_type(x) # revealed: int
|
||||
```
|
||||
|
||||
## Union type as iterable where one union element has invalid `__iter__` method
|
||||
|
||||
```py
|
||||
class TestIter:
|
||||
def __next__(self) -> int:
|
||||
return 42
|
||||
|
||||
class Test:
|
||||
def __iter__(self) -> TestIter:
|
||||
return TestIter()
|
||||
|
||||
class Test2:
|
||||
def __iter__(self) -> int:
|
||||
return 42
|
||||
|
||||
def coinflip() -> bool:
|
||||
return True
|
||||
|
||||
# error: "Object of type `Test | Test2` is not iterable"
|
||||
for x in Test() if coinflip() else Test2():
|
||||
reveal_type(x) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Union type as iterator where one union element has no `__next__` method
|
||||
|
||||
```py
|
||||
class TestIter:
|
||||
def __next__(self) -> int:
|
||||
return 42
|
||||
|
||||
class Test:
|
||||
def __iter__(self) -> TestIter | int:
|
||||
return TestIter()
|
||||
|
||||
# error: [not-iterable] "Object of type `Test` is not iterable"
|
||||
for x in Test():
|
||||
reveal_type(x) # revealed: Unknown
|
||||
```
|
||||
|
||||
@@ -3,6 +3,10 @@
|
||||
## Basic While Loop
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1
|
||||
while flag:
|
||||
x = 2
|
||||
@@ -13,6 +17,10 @@ reveal_type(x) # revealed: Literal[1, 2]
|
||||
## While with else (no break)
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1
|
||||
while flag:
|
||||
x = 2
|
||||
@@ -26,6 +34,10 @@ reveal_type(x) # revealed: Literal[3]
|
||||
## While with Else (may break)
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag2 = bool_instance(), bool_instance()
|
||||
x = 1
|
||||
y = 0
|
||||
while flag:
|
||||
|
||||
196
crates/red_knot_python_semantic/resources/mdtest/metaclass.md
Normal file
196
crates/red_knot_python_semantic/resources/mdtest/metaclass.md
Normal file
@@ -0,0 +1,196 @@
|
||||
## Default
|
||||
|
||||
```py
|
||||
class M(type): ...
|
||||
|
||||
reveal_type(M.__class__) # revealed: Literal[type]
|
||||
```
|
||||
|
||||
## `object`
|
||||
|
||||
```py
|
||||
reveal_type(object.__class__) # revealed: Literal[type]
|
||||
```
|
||||
|
||||
## `type`
|
||||
|
||||
```py
|
||||
reveal_type(type.__class__) # revealed: Literal[type]
|
||||
```
|
||||
|
||||
## Basic
|
||||
|
||||
```py
|
||||
class M(type): ...
|
||||
class B(metaclass=M): ...
|
||||
|
||||
reveal_type(B.__class__) # revealed: Literal[M]
|
||||
```
|
||||
|
||||
## Invalid metaclass
|
||||
|
||||
A class which doesn't inherit `type` (and/or doesn't implement a custom `__new__` accepting the same
|
||||
arguments as `type.__new__`) isn't a valid metaclass.
|
||||
|
||||
```py
|
||||
class M: ...
|
||||
class A(metaclass=M): ...
|
||||
|
||||
# TODO: emit a diagnostic for the invalid metaclass
|
||||
reveal_type(A.__class__) # revealed: Literal[M]
|
||||
```
|
||||
|
||||
## Linear inheritance
|
||||
|
||||
If a class is a subclass of a class with a custom metaclass, then the subclass will also have that
|
||||
metaclass.
|
||||
|
||||
```py
|
||||
class M(type): ...
|
||||
class A(metaclass=M): ...
|
||||
class B(A): ...
|
||||
|
||||
reveal_type(B.__class__) # revealed: Literal[M]
|
||||
```
|
||||
|
||||
## Conflict (1)
|
||||
|
||||
The metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its
|
||||
bases. ("Strict subclass" is a synonym for "proper subclass"; a non-strict subclass can be a
|
||||
subclass or the class itself.)
|
||||
|
||||
```py
|
||||
class M1(type): ...
|
||||
class M2(type): ...
|
||||
class A(metaclass=M1): ...
|
||||
class B(metaclass=M2): ...
|
||||
|
||||
# error: [conflicting-metaclass] "The metaclass of a derived class (`C`) must be a subclass of the metaclasses of all its bases, but `M1` (metaclass of base class `A`) and `M2` (metaclass of base class `B`) have no subclass relationship"
|
||||
class C(A, B): ...
|
||||
|
||||
reveal_type(C.__class__) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Conflict (2)
|
||||
|
||||
The metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its
|
||||
bases. ("Strict subclass" is a synonym for "proper subclass"; a non-strict subclass can be a
|
||||
subclass or the class itself.)
|
||||
|
||||
```py
|
||||
class M1(type): ...
|
||||
class M2(type): ...
|
||||
class A(metaclass=M1): ...
|
||||
|
||||
# error: [conflicting-metaclass] "The metaclass of a derived class (`B`) must be a subclass of the metaclasses of all its bases, but `M2` (metaclass of `B`) and `M1` (metaclass of base class `A`) have no subclass relationship"
|
||||
class B(A, metaclass=M2): ...
|
||||
|
||||
reveal_type(B.__class__) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Common metaclass
|
||||
|
||||
A class has two explicit bases, both of which have the same metaclass.
|
||||
|
||||
```py
|
||||
class M(type): ...
|
||||
class A(metaclass=M): ...
|
||||
class B(metaclass=M): ...
|
||||
class C(A, B): ...
|
||||
|
||||
reveal_type(C.__class__) # revealed: Literal[M]
|
||||
```
|
||||
|
||||
## Metaclass metaclass
|
||||
|
||||
A class has an explicit base with a custom metaclass. That metaclass itself has a custom metaclass.
|
||||
|
||||
```py
|
||||
class M1(type): ...
|
||||
class M2(type, metaclass=M1): ...
|
||||
class M3(M2): ...
|
||||
class A(metaclass=M3): ...
|
||||
class B(A): ...
|
||||
|
||||
reveal_type(A.__class__) # revealed: Literal[M3]
|
||||
```
|
||||
|
||||
## Diamond inheritance
|
||||
|
||||
```py
|
||||
class M(type): ...
|
||||
class M1(M): ...
|
||||
class M2(M): ...
|
||||
class M12(M1, M2): ...
|
||||
class A(metaclass=M1): ...
|
||||
class B(metaclass=M2): ...
|
||||
class C(metaclass=M12): ...
|
||||
|
||||
# error: [conflicting-metaclass] "The metaclass of a derived class (`D`) must be a subclass of the metaclasses of all its bases, but `M1` (metaclass of base class `A`) and `M2` (metaclass of base class `B`) have no subclass relationship"
|
||||
class D(A, B, C): ...
|
||||
|
||||
reveal_type(D.__class__) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Unknown
|
||||
|
||||
```py
|
||||
from nonexistent_module import UnknownClass # error: [unresolved-import]
|
||||
|
||||
class C(UnknownClass): ...
|
||||
|
||||
# TODO: should be `type[type] & Unknown`
|
||||
reveal_type(C.__class__) # revealed: Literal[type]
|
||||
|
||||
class M(type): ...
|
||||
class A(metaclass=M): ...
|
||||
class B(A, UnknownClass): ...
|
||||
|
||||
# TODO: should be `type[M] & Unknown`
|
||||
reveal_type(B.__class__) # revealed: Literal[M]
|
||||
```
|
||||
|
||||
## Duplicate
|
||||
|
||||
```py
|
||||
class M(type): ...
|
||||
class A(metaclass=M): ...
|
||||
class B(A, A): ... # error: [duplicate-base] "Duplicate base class `A`"
|
||||
|
||||
reveal_type(B.__class__) # revealed: Literal[M]
|
||||
```
|
||||
|
||||
## Non-class
|
||||
|
||||
When a class has an explicit `metaclass` that is not a class, but is a callable that accepts
|
||||
`type.__new__` arguments, we should return the meta type of its return type.
|
||||
|
||||
```py
|
||||
def f(*args, **kwargs) -> int: ...
|
||||
|
||||
class A(metaclass=f): ...
|
||||
|
||||
# TODO should be `type[int]`
|
||||
reveal_type(A.__class__) # revealed: @Todo
|
||||
```
|
||||
|
||||
## Cyclic
|
||||
|
||||
Retrieving the metaclass of a cyclically defined class should not cause an infinite loop.
|
||||
|
||||
```py path=a.pyi
|
||||
class A(B): ... # error: [cyclic-class-def]
|
||||
class B(C): ... # error: [cyclic-class-def]
|
||||
class C(A): ... # error: [cyclic-class-def]
|
||||
|
||||
reveal_type(A.__class__) # revealed: Unknown
|
||||
```
|
||||
|
||||
## PEP 695 generic
|
||||
|
||||
```py
|
||||
class M(type): ...
|
||||
class A[T: str](metaclass=M): ...
|
||||
|
||||
reveal_type(A.__class__) # revealed: Literal[M]
|
||||
```
|
||||
409
crates/red_knot_python_semantic/resources/mdtest/mro.md
Normal file
409
crates/red_knot_python_semantic/resources/mdtest/mro.md
Normal file
@@ -0,0 +1,409 @@
|
||||
# Method Resolution Order tests
|
||||
|
||||
Tests that assert that we can infer the correct type for a class's `__mro__` attribute.
|
||||
|
||||
This attribute is rarely accessed directly at runtime. However, it's extremely important for *us* to
|
||||
know the precise possible values of a class's Method Resolution Order, or we won't be able to infer
|
||||
the correct type of attributes accessed from instances.
|
||||
|
||||
For documentation on method resolution orders, see:
|
||||
|
||||
- <https://docs.python.org/3/glossary.html#term-method-resolution-order>
|
||||
- <https://docs.python.org/3/howto/mro.html#python-2-3-mro>
|
||||
|
||||
## No bases
|
||||
|
||||
```py
|
||||
class C: ...
|
||||
|
||||
reveal_type(C.__mro__) # revealed: tuple[Literal[C], Literal[object]]
|
||||
```
|
||||
|
||||
## The special case: `object` itself
|
||||
|
||||
```py
|
||||
reveal_type(object.__mro__) # revealed: tuple[Literal[object]]
|
||||
```
|
||||
|
||||
## Explicit inheritance from `object`
|
||||
|
||||
```py
|
||||
class C(object): ...
|
||||
|
||||
reveal_type(C.__mro__) # revealed: tuple[Literal[C], Literal[object]]
|
||||
```
|
||||
|
||||
## Explicit inheritance from non-`object` single base
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B(A): ...
|
||||
|
||||
reveal_type(B.__mro__) # revealed: tuple[Literal[B], Literal[A], Literal[object]]
|
||||
```
|
||||
|
||||
## Linearization of multiple bases
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C(A, B): ...
|
||||
|
||||
reveal_type(C.__mro__) # revealed: tuple[Literal[C], Literal[A], Literal[B], Literal[object]]
|
||||
```
|
||||
|
||||
## Complex diamond inheritance (1)
|
||||
|
||||
This is "ex_2" from <https://docs.python.org/3/howto/mro.html#the-end>
|
||||
|
||||
```py
|
||||
class O: ...
|
||||
class X(O): ...
|
||||
class Y(O): ...
|
||||
class A(X, Y): ...
|
||||
class B(Y, X): ...
|
||||
|
||||
reveal_type(A.__mro__) # revealed: tuple[Literal[A], Literal[X], Literal[Y], Literal[O], Literal[object]]
|
||||
reveal_type(B.__mro__) # revealed: tuple[Literal[B], Literal[Y], Literal[X], Literal[O], Literal[object]]
|
||||
```
|
||||
|
||||
## Complex diamond inheritance (2)
|
||||
|
||||
This is "ex_5" from <https://docs.python.org/3/howto/mro.html#the-end>
|
||||
|
||||
```py
|
||||
class O: ...
|
||||
class F(O): ...
|
||||
class E(O): ...
|
||||
class D(O): ...
|
||||
class C(D, F): ...
|
||||
class B(D, E): ...
|
||||
class A(B, C): ...
|
||||
|
||||
# revealed: tuple[Literal[C], Literal[D], Literal[F], Literal[O], Literal[object]]
|
||||
reveal_type(C.__mro__)
|
||||
# revealed: tuple[Literal[B], Literal[D], Literal[E], Literal[O], Literal[object]]
|
||||
reveal_type(B.__mro__)
|
||||
# revealed: tuple[Literal[A], Literal[B], Literal[C], Literal[D], Literal[E], Literal[F], Literal[O], Literal[object]]
|
||||
reveal_type(A.__mro__)
|
||||
```
|
||||
|
||||
## Complex diamond inheritance (3)
|
||||
|
||||
This is "ex_6" from <https://docs.python.org/3/howto/mro.html#the-end>
|
||||
|
||||
```py
|
||||
class O: ...
|
||||
class F(O): ...
|
||||
class E(O): ...
|
||||
class D(O): ...
|
||||
class C(D, F): ...
|
||||
class B(E, D): ...
|
||||
class A(B, C): ...
|
||||
|
||||
# revealed: tuple[Literal[C], Literal[D], Literal[F], Literal[O], Literal[object]]
|
||||
reveal_type(C.__mro__)
|
||||
# revealed: tuple[Literal[B], Literal[E], Literal[D], Literal[O], Literal[object]]
|
||||
reveal_type(B.__mro__)
|
||||
# revealed: tuple[Literal[A], Literal[B], Literal[E], Literal[C], Literal[D], Literal[F], Literal[O], Literal[object]]
|
||||
reveal_type(A.__mro__)
|
||||
```
|
||||
|
||||
## Complex diamond inheritance (4)
|
||||
|
||||
This is "ex_9" from <https://docs.python.org/3/howto/mro.html#the-end>
|
||||
|
||||
```py
|
||||
class O: ...
|
||||
class A(O): ...
|
||||
class B(O): ...
|
||||
class C(O): ...
|
||||
class D(O): ...
|
||||
class E(O): ...
|
||||
class K1(A, B, C): ...
|
||||
class K2(D, B, E): ...
|
||||
class K3(D, A): ...
|
||||
class Z(K1, K2, K3): ...
|
||||
|
||||
# revealed: tuple[Literal[K1], Literal[A], Literal[B], Literal[C], Literal[O], Literal[object]]
|
||||
reveal_type(K1.__mro__)
|
||||
# revealed: tuple[Literal[K2], Literal[D], Literal[B], Literal[E], Literal[O], Literal[object]]
|
||||
reveal_type(K2.__mro__)
|
||||
# revealed: tuple[Literal[K3], Literal[D], Literal[A], Literal[O], Literal[object]]
|
||||
reveal_type(K3.__mro__)
|
||||
# revealed: tuple[Literal[Z], Literal[K1], Literal[K2], Literal[K3], Literal[D], Literal[A], Literal[B], Literal[C], Literal[E], Literal[O], Literal[object]]
|
||||
reveal_type(Z.__mro__)
|
||||
```
|
||||
|
||||
## Inheritance from `Unknown`
|
||||
|
||||
```py
|
||||
from does_not_exist import DoesNotExist # error: [unresolved-import]
|
||||
|
||||
class A(DoesNotExist): ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
class D(A, B, C): ...
|
||||
class E(B, C): ...
|
||||
class F(E, A): ...
|
||||
|
||||
reveal_type(A.__mro__) # revealed: tuple[Literal[A], Unknown, Literal[object]]
|
||||
reveal_type(D.__mro__) # revealed: tuple[Literal[D], Literal[A], Unknown, Literal[B], Literal[C], Literal[object]]
|
||||
reveal_type(E.__mro__) # revealed: tuple[Literal[E], Literal[B], Literal[C], Literal[object]]
|
||||
reveal_type(F.__mro__) # revealed: tuple[Literal[F], Literal[E], Literal[B], Literal[C], Literal[A], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## `__bases__` lists that cause errors at runtime
|
||||
|
||||
If the class's `__bases__` cause an exception to be raised at runtime and therefore the class
|
||||
creation to fail, we infer the class's `__mro__` as being `[<class>, Unknown, object]`:
|
||||
|
||||
```py
|
||||
# error: [inconsistent-mro] "Cannot create a consistent method resolution order (MRO) for class `Foo` with bases list `[<class 'object'>, <class 'int'>]`"
|
||||
class Foo(object, int): ...
|
||||
|
||||
reveal_type(Foo.__mro__) # revealed: tuple[Literal[Foo], Unknown, Literal[object]]
|
||||
|
||||
class Bar(Foo): ...
|
||||
|
||||
reveal_type(Bar.__mro__) # revealed: tuple[Literal[Bar], Literal[Foo], Unknown, Literal[object]]
|
||||
|
||||
# This is the `TypeError` at the bottom of "ex_2"
|
||||
# in the examples at <https://docs.python.org/3/howto/mro.html#the-end>
|
||||
class O: ...
|
||||
class X(O): ...
|
||||
class Y(O): ...
|
||||
class A(X, Y): ...
|
||||
class B(Y, X): ...
|
||||
|
||||
reveal_type(A.__mro__) # revealed: tuple[Literal[A], Literal[X], Literal[Y], Literal[O], Literal[object]]
|
||||
reveal_type(B.__mro__) # revealed: tuple[Literal[B], Literal[Y], Literal[X], Literal[O], Literal[object]]
|
||||
|
||||
# error: [inconsistent-mro] "Cannot create a consistent method resolution order (MRO) for class `Z` with bases list `[<class 'A'>, <class 'B'>]`"
|
||||
class Z(A, B): ...
|
||||
|
||||
reveal_type(Z.__mro__) # revealed: tuple[Literal[Z], Unknown, Literal[object]]
|
||||
|
||||
class AA(Z): ...
|
||||
|
||||
reveal_type(AA.__mro__) # revealed: tuple[Literal[AA], Literal[Z], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## `__bases__` includes a `Union`
|
||||
|
||||
We don't support union types in a class's bases; a base must resolve to a single `ClassLiteralType`.
|
||||
If we find a union type in a class's bases, we infer the class's `__mro__` as being
|
||||
`[<class>, Unknown, object]`, the same as for MROs that cause errors at runtime.
|
||||
|
||||
```py
|
||||
def returns_bool() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
class B: ...
|
||||
|
||||
if returns_bool():
|
||||
x = A
|
||||
else:
|
||||
x = B
|
||||
|
||||
reveal_type(x) # revealed: Literal[A, B]
|
||||
|
||||
# error: 11 [invalid-base] "Invalid class base with type `Literal[A, B]` (all bases must be a class, `Any`, `Unknown` or `Todo`)"
|
||||
class Foo(x): ...
|
||||
|
||||
reveal_type(Foo.__mro__) # revealed: tuple[Literal[Foo], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## `__bases__` includes multiple `Union`s
|
||||
|
||||
```py
|
||||
def returns_bool() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
class D: ...
|
||||
|
||||
if returns_bool():
|
||||
x = A
|
||||
else:
|
||||
x = B
|
||||
|
||||
if returns_bool():
|
||||
y = C
|
||||
else:
|
||||
y = D
|
||||
|
||||
reveal_type(x) # revealed: Literal[A, B]
|
||||
reveal_type(y) # revealed: Literal[C, D]
|
||||
|
||||
# error: 11 [invalid-base] "Invalid class base with type `Literal[A, B]` (all bases must be a class, `Any`, `Unknown` or `Todo`)"
|
||||
# error: 14 [invalid-base] "Invalid class base with type `Literal[C, D]` (all bases must be a class, `Any`, `Unknown` or `Todo`)"
|
||||
class Foo(x, y): ...
|
||||
|
||||
reveal_type(Foo.__mro__) # revealed: tuple[Literal[Foo], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## `__bases__` lists that cause errors... now with `Union`s
|
||||
|
||||
```py
|
||||
def returns_bool() -> bool:
|
||||
return True
|
||||
|
||||
class O: ...
|
||||
class X(O): ...
|
||||
class Y(O): ...
|
||||
|
||||
if bool():
|
||||
foo = Y
|
||||
else:
|
||||
foo = object
|
||||
|
||||
# error: 21 [invalid-base] "Invalid class base with type `Literal[Y, object]` (all bases must be a class, `Any`, `Unknown` or `Todo`)"
|
||||
class PossibleError(foo, X): ...
|
||||
|
||||
reveal_type(PossibleError.__mro__) # revealed: tuple[Literal[PossibleError], Unknown, Literal[object]]
|
||||
|
||||
class A(X, Y): ...
|
||||
|
||||
reveal_type(A.__mro__) # revealed: tuple[Literal[A], Literal[X], Literal[Y], Literal[O], Literal[object]]
|
||||
|
||||
if returns_bool():
|
||||
class B(X, Y): ...
|
||||
|
||||
else:
|
||||
class B(Y, X): ...
|
||||
|
||||
# revealed: tuple[Literal[B], Literal[X], Literal[Y], Literal[O], Literal[object]] | tuple[Literal[B], Literal[Y], Literal[X], Literal[O], Literal[object]]
|
||||
reveal_type(B.__mro__)
|
||||
|
||||
# error: 12 [invalid-base] "Invalid class base with type `Literal[B, B]` (all bases must be a class, `Any`, `Unknown` or `Todo`)"
|
||||
class Z(A, B): ...
|
||||
|
||||
reveal_type(Z.__mro__) # revealed: tuple[Literal[Z], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## `__bases__` lists with duplicate bases
|
||||
|
||||
```py
|
||||
class Foo(str, str): ... # error: 16 [duplicate-base] "Duplicate base class `str`"
|
||||
|
||||
reveal_type(Foo.__mro__) # revealed: tuple[Literal[Foo], Unknown, Literal[object]]
|
||||
|
||||
class Spam: ...
|
||||
class Eggs: ...
|
||||
class Ham(
|
||||
Spam,
|
||||
Eggs,
|
||||
Spam, # error: [duplicate-base] "Duplicate base class `Spam`"
|
||||
Eggs, # error: [duplicate-base] "Duplicate base class `Eggs`"
|
||||
): ...
|
||||
|
||||
reveal_type(Ham.__mro__) # revealed: tuple[Literal[Ham], Unknown, Literal[object]]
|
||||
|
||||
class Mushrooms: ...
|
||||
class Omelette(Spam, Eggs, Mushrooms, Mushrooms): ... # error: [duplicate-base]
|
||||
|
||||
reveal_type(Omelette.__mro__) # revealed: tuple[Literal[Omelette], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## `__bases__` lists with duplicate `Unknown` bases
|
||||
|
||||
```py
|
||||
# error: [unresolved-import]
|
||||
# error: [unresolved-import]
|
||||
from does_not_exist import unknown_object_1, unknown_object_2
|
||||
|
||||
reveal_type(unknown_object_1) # revealed: Unknown
|
||||
reveal_type(unknown_object_2) # revealed: Unknown
|
||||
|
||||
# We *should* emit an error here to warn the user that we have no idea
|
||||
# what the MRO of this class should really be.
|
||||
# However, we don't complain about "duplicate base classes" here,
|
||||
# even though two classes are both inferred as being `Unknown`.
|
||||
#
|
||||
# (TODO: should we revisit this? Does it violate the gradual guarantee?
|
||||
# Should we just silently infer `[Foo, Unknown, object]` as the MRO here
|
||||
# without emitting any error at all? Not sure...)
|
||||
#
|
||||
# error: [inconsistent-mro] "Cannot create a consistent method resolution order (MRO) for class `Foo` with bases list `[Unknown, Unknown]`"
|
||||
class Foo(unknown_object_1, unknown_object_2): ...
|
||||
|
||||
reveal_type(Foo.__mro__) # revealed: tuple[Literal[Foo], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## Unrelated objects inferred as `Any`/`Unknown` do not have special `__mro__` attributes
|
||||
|
||||
```py
|
||||
from does_not_exist import unknown_object # error: [unresolved-import]
|
||||
|
||||
reveal_type(unknown_object) # revealed: Unknown
|
||||
reveal_type(unknown_object.__mro__) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Classes that inherit from themselves
|
||||
|
||||
These are invalid, but we need to be able to handle them gracefully without panicking.
|
||||
|
||||
```py path=a.pyi
|
||||
class Foo(Foo): ... # error: [cyclic-class-def]
|
||||
|
||||
reveal_type(Foo) # revealed: Literal[Foo]
|
||||
reveal_type(Foo.__mro__) # revealed: tuple[Literal[Foo], Unknown, Literal[object]]
|
||||
|
||||
class Bar: ...
|
||||
class Baz: ...
|
||||
class Boz(Bar, Baz, Boz): ... # error: [cyclic-class-def]
|
||||
|
||||
reveal_type(Boz) # revealed: Literal[Boz]
|
||||
reveal_type(Boz.__mro__) # revealed: tuple[Literal[Boz], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## Classes with indirect cycles in their MROs
|
||||
|
||||
These are similarly unlikely, but we still shouldn't crash:
|
||||
|
||||
```py path=a.pyi
|
||||
class Foo(Bar): ... # error: [cyclic-class-def]
|
||||
class Bar(Baz): ... # error: [cyclic-class-def]
|
||||
class Baz(Foo): ... # error: [cyclic-class-def]
|
||||
|
||||
reveal_type(Foo.__mro__) # revealed: tuple[Literal[Foo], Unknown, Literal[object]]
|
||||
reveal_type(Bar.__mro__) # revealed: tuple[Literal[Bar], Unknown, Literal[object]]
|
||||
reveal_type(Baz.__mro__) # revealed: tuple[Literal[Baz], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## Classes with cycles in their MROs, and multiple inheritance
|
||||
|
||||
```py path=a.pyi
|
||||
class Spam: ...
|
||||
class Foo(Bar): ... # error: [cyclic-class-def]
|
||||
class Bar(Baz): ... # error: [cyclic-class-def]
|
||||
class Baz(Foo, Spam): ... # error: [cyclic-class-def]
|
||||
|
||||
reveal_type(Foo.__mro__) # revealed: tuple[Literal[Foo], Unknown, Literal[object]]
|
||||
reveal_type(Bar.__mro__) # revealed: tuple[Literal[Bar], Unknown, Literal[object]]
|
||||
reveal_type(Baz.__mro__) # revealed: tuple[Literal[Baz], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
## Classes with cycles in their MRO, and a sub-graph
|
||||
|
||||
```py path=a.pyi
|
||||
class FooCycle(BarCycle): ... # error: [cyclic-class-def]
|
||||
class Foo: ...
|
||||
class BarCycle(FooCycle): ... # error: [cyclic-class-def]
|
||||
class Bar(Foo): ...
|
||||
|
||||
# TODO: can we avoid emitting the errors for these?
|
||||
# The classes have cyclic superclasses,
|
||||
# but are not themselves cyclic...
|
||||
class Baz(Bar, BarCycle): ... # error: [cyclic-class-def]
|
||||
class Spam(Baz): ... # error: [cyclic-class-def]
|
||||
|
||||
reveal_type(FooCycle.__mro__) # revealed: tuple[Literal[FooCycle], Unknown, Literal[object]]
|
||||
reveal_type(BarCycle.__mro__) # revealed: tuple[Literal[BarCycle], Unknown, Literal[object]]
|
||||
reveal_type(Baz.__mro__) # revealed: tuple[Literal[Baz], Unknown, Literal[object]]
|
||||
reveal_type(Spam.__mro__) # revealed: tuple[Literal[Spam], Unknown, Literal[object]]
|
||||
```
|
||||
@@ -0,0 +1,93 @@
|
||||
# Narrowing in boolean expressions
|
||||
|
||||
In `or` expressions, the right-hand side is evaluated only if the left-hand side is **falsy**. So
|
||||
when the right-hand side is evaluated, we know the left side has failed.
|
||||
|
||||
Similarly, in `and` expressions, the right-hand side is evaluated only if the left-hand side is
|
||||
**truthy**. So when the right-hand side is evaluated, we know the left side has succeeded.
|
||||
|
||||
## Narrowing in `or`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
|
||||
x: A | None = A() if bool_instance() else None
|
||||
|
||||
isinstance(x, A) or reveal_type(x) # revealed: None
|
||||
x is None or reveal_type(x) # revealed: A
|
||||
reveal_type(x) # revealed: A | None
|
||||
```
|
||||
|
||||
## Narrowing in `and`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
|
||||
x: A | None = A() if bool_instance() else None
|
||||
|
||||
isinstance(x, A) and reveal_type(x) # revealed: A
|
||||
x is None and reveal_type(x) # revealed: None
|
||||
reveal_type(x) # revealed: A | None
|
||||
```
|
||||
|
||||
## Multiple `and` arms
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
|
||||
x: A | None = A() if bool_instance() else None
|
||||
|
||||
bool_instance() and isinstance(x, A) and reveal_type(x) # revealed: A
|
||||
isinstance(x, A) and bool_instance() and reveal_type(x) # revealed: A
|
||||
reveal_type(x) and isinstance(x, A) and bool_instance() # revealed: A | None
|
||||
```
|
||||
|
||||
## Multiple `or` arms
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
|
||||
x: A | None = A() if bool_instance() else None
|
||||
|
||||
bool_instance() or isinstance(x, A) or reveal_type(x) # revealed: None
|
||||
isinstance(x, A) or bool_instance() or reveal_type(x) # revealed: None
|
||||
reveal_type(x) or isinstance(x, A) or bool_instance() # revealed: A | None
|
||||
```
|
||||
|
||||
## Multiple predicates
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
|
||||
x: A | None | Literal[1] = A() if bool_instance() else None if bool_instance() else 1
|
||||
|
||||
x is None or isinstance(x, A) or reveal_type(x) # revealed: Literal[1]
|
||||
```
|
||||
|
||||
## Mix of `and` and `or`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
|
||||
x: A | None | Literal[1] = A() if bool_instance() else None if bool_instance() else 1
|
||||
|
||||
isinstance(x, A) or x is not None and reveal_type(x) # revealed: Literal[1]
|
||||
```
|
||||
@@ -0,0 +1,282 @@
|
||||
# Narrowing for conditionals with boolean expressions
|
||||
|
||||
## Narrowing in `and` conditional
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
|
||||
def instance() -> A | B:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, A) and isinstance(x, B):
|
||||
reveal_type(x) # revealed: A & B
|
||||
else:
|
||||
reveal_type(x) # revealed: B & ~A | A & ~B
|
||||
```
|
||||
|
||||
## Arms might not add narrowing constraints
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
def instance() -> A | B:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, A) and bool_instance():
|
||||
reveal_type(x) # revealed: A
|
||||
else:
|
||||
reveal_type(x) # revealed: A | B
|
||||
|
||||
if bool_instance() and isinstance(x, A):
|
||||
reveal_type(x) # revealed: A
|
||||
else:
|
||||
reveal_type(x) # revealed: A | B
|
||||
|
||||
reveal_type(x) # revealed: A | B
|
||||
```
|
||||
|
||||
## Statically known arms
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
|
||||
def instance() -> A | B:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, A) and True:
|
||||
reveal_type(x) # revealed: A
|
||||
else:
|
||||
reveal_type(x) # revealed: B & ~A
|
||||
|
||||
if True and isinstance(x, A):
|
||||
reveal_type(x) # revealed: A
|
||||
else:
|
||||
reveal_type(x) # revealed: B & ~A
|
||||
|
||||
if False and isinstance(x, A):
|
||||
# TODO: should emit an `unreachable code` diagnostic
|
||||
reveal_type(x) # revealed: A
|
||||
else:
|
||||
reveal_type(x) # revealed: A | B
|
||||
|
||||
if False or isinstance(x, A):
|
||||
reveal_type(x) # revealed: A
|
||||
else:
|
||||
reveal_type(x) # revealed: B & ~A
|
||||
|
||||
if True or isinstance(x, A):
|
||||
reveal_type(x) # revealed: A | B
|
||||
else:
|
||||
# TODO: should emit an `unreachable code` diagnostic
|
||||
reveal_type(x) # revealed: B & ~A
|
||||
|
||||
reveal_type(x) # revealed: A | B
|
||||
```
|
||||
|
||||
## The type of multiple symbols can be narrowed down
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
|
||||
def instance() -> A | B:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
y = instance()
|
||||
|
||||
if isinstance(x, A) and isinstance(y, B):
|
||||
reveal_type(x) # revealed: A
|
||||
reveal_type(y) # revealed: B
|
||||
else:
|
||||
# No narrowing: Only-one or both checks might have failed
|
||||
reveal_type(x) # revealed: A | B
|
||||
reveal_type(y) # revealed: A | B
|
||||
|
||||
reveal_type(x) # revealed: A | B
|
||||
reveal_type(y) # revealed: A | B
|
||||
```
|
||||
|
||||
## Narrowing in `or` conditional
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
|
||||
def instance() -> A | B | C:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, A) or isinstance(x, B):
|
||||
reveal_type(x) # revealed: A | B
|
||||
else:
|
||||
reveal_type(x) # revealed: C & ~A & ~B
|
||||
```
|
||||
|
||||
## In `or`, all arms should add constraint in order to narrow
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
|
||||
def instance() -> A | B | C:
|
||||
return A()
|
||||
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, A) or isinstance(x, B) or bool_instance():
|
||||
reveal_type(x) # revealed: A | B | C
|
||||
else:
|
||||
reveal_type(x) # revealed: C & ~A & ~B
|
||||
```
|
||||
|
||||
## in `or`, all arms should narrow the same set of symbols
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
|
||||
def instance() -> A | B | C:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
y = instance()
|
||||
|
||||
if isinstance(x, A) or isinstance(y, A):
|
||||
# The predicate might be satisfied by the right side, so the type of `x` can’t be narrowed down here.
|
||||
reveal_type(x) # revealed: A | B | C
|
||||
# The same for `y`
|
||||
reveal_type(y) # revealed: A | B | C
|
||||
else:
|
||||
reveal_type(x) # revealed: B & ~A | C & ~A
|
||||
reveal_type(y) # revealed: B & ~A | C & ~A
|
||||
|
||||
if (isinstance(x, A) and isinstance(y, A)) or (isinstance(x, B) and isinstance(y, B)):
|
||||
# Here, types of `x` and `y` can be narrowd since all `or` arms constraint them.
|
||||
reveal_type(x) # revealed: A | B
|
||||
reveal_type(y) # revealed: A | B
|
||||
else:
|
||||
reveal_type(x) # revealed: A | B | C
|
||||
reveal_type(y) # revealed: A | B | C
|
||||
```
|
||||
|
||||
## mixing `and` and `not`
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
|
||||
def instance() -> A | B | C:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, B) and not isinstance(x, C):
|
||||
reveal_type(x) # revealed: B & ~C
|
||||
else:
|
||||
# ~(B & ~C) -> ~B | C -> (A & ~B) | (C & ~B) | C -> (A & ~B) | C
|
||||
reveal_type(x) # revealed: A & ~B | C
|
||||
```
|
||||
|
||||
## mixing `or` and `not`
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
|
||||
def instance() -> A | B | C:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, B) or not isinstance(x, C):
|
||||
reveal_type(x) # revealed: B | A & ~C
|
||||
else:
|
||||
reveal_type(x) # revealed: C & ~B
|
||||
```
|
||||
|
||||
## `or` with nested `and`
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
|
||||
def instance() -> A | B | C:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, A) or (isinstance(x, B) and not isinstance(x, C)):
|
||||
reveal_type(x) # revealed: A | B & ~C
|
||||
else:
|
||||
# ~(A | (B & ~C)) -> ~A & ~(B & ~C) -> ~A & (~B | C) -> (~A & C) | (~A ~ B)
|
||||
reveal_type(x) # revealed: C & ~A
|
||||
```
|
||||
|
||||
## `and` with nested `or`
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
|
||||
def instance() -> A | B | C:
|
||||
return A()
|
||||
|
||||
x = instance()
|
||||
|
||||
if isinstance(x, A) and (isinstance(x, B) or not isinstance(x, C)):
|
||||
# A & (B | ~C) -> (A & B) | (A & ~C)
|
||||
reveal_type(x) # revealed: A & B | A & ~C
|
||||
else:
|
||||
# ~((A & B) | (A & ~C)) ->
|
||||
# ~(A & B) & ~(A & ~C) ->
|
||||
# (~A | ~B) & (~A | C) ->
|
||||
# [(~A | ~B) & ~A] | [(~A | ~B) & C] ->
|
||||
# ~A | (~A & C) | (~B & C) ->
|
||||
# ~A | (C & ~B) ->
|
||||
# ~A | (C & ~B) The positive side of ~A is A | B | C ->
|
||||
reveal_type(x) # revealed: B & ~A | C & ~A | C & ~B
|
||||
```
|
||||
|
||||
## Boolean expression internal narrowing
|
||||
|
||||
```py
|
||||
def optional_string() -> str | None:
|
||||
return None
|
||||
|
||||
x = optional_string()
|
||||
y = optional_string()
|
||||
|
||||
if x is None and y is not x:
|
||||
reveal_type(y) # revealed: str
|
||||
|
||||
# Neither of the conditions alone is sufficient for narrowing y's type:
|
||||
if x is None:
|
||||
reveal_type(y) # revealed: str | None
|
||||
|
||||
if y is not x:
|
||||
reveal_type(y) # revealed: str | None
|
||||
```
|
||||
@@ -0,0 +1,57 @@
|
||||
# Narrowing for conditionals with elif and else
|
||||
|
||||
## Positive contributions become negative in elif-else blocks
|
||||
|
||||
```py
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
x = int_instance()
|
||||
|
||||
if x == 1:
|
||||
# cannot narrow; could be a subclass of `int`
|
||||
reveal_type(x) # revealed: int
|
||||
elif x == 2:
|
||||
reveal_type(x) # revealed: int & ~Literal[1]
|
||||
elif x != 3:
|
||||
reveal_type(x) # revealed: int & ~Literal[1] & ~Literal[2] & ~Literal[3]
|
||||
```
|
||||
|
||||
## Positive contributions become negative in elif-else blocks, with simplification
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = 1 if bool_instance() else 2 if bool_instance() else 3
|
||||
|
||||
if x == 1:
|
||||
# TODO should be Literal[1]
|
||||
reveal_type(x) # revealed: Literal[1, 2, 3]
|
||||
elif x == 2:
|
||||
# TODO should be Literal[2]
|
||||
reveal_type(x) # revealed: Literal[2, 3]
|
||||
else:
|
||||
reveal_type(x) # revealed: Literal[3]
|
||||
```
|
||||
|
||||
## Multiple negative contributions using elif, with simplification
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = 1 if bool_instance() else 2 if bool_instance() else 3
|
||||
|
||||
if x != 1:
|
||||
reveal_type(x) # revealed: Literal[2, 3]
|
||||
elif x != 2:
|
||||
# TODO should be `Literal[1]`
|
||||
reveal_type(x) # revealed: Literal[1, 3]
|
||||
elif x == 3:
|
||||
# TODO should be Never
|
||||
reveal_type(x) # revealed: Literal[1, 2, 3]
|
||||
else:
|
||||
# TODO should be Never
|
||||
reveal_type(x) # revealed: Literal[1, 2]
|
||||
```
|
||||
@@ -3,10 +3,16 @@
|
||||
## `is None`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = None if flag else 1
|
||||
|
||||
if x is None:
|
||||
reveal_type(x) # revealed: None
|
||||
else:
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
|
||||
reveal_type(x) # revealed: None | Literal[1]
|
||||
```
|
||||
@@ -14,6 +20,11 @@ reveal_type(x) # revealed: None | Literal[1]
|
||||
## `is` for other types
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
class A: ...
|
||||
|
||||
x = A()
|
||||
@@ -21,6 +32,8 @@ y = x if flag else None
|
||||
|
||||
if y is x:
|
||||
reveal_type(y) # revealed: A
|
||||
else:
|
||||
reveal_type(y) # revealed: A | None
|
||||
|
||||
reveal_type(y) # revealed: A | None
|
||||
```
|
||||
@@ -28,6 +41,10 @@ reveal_type(y) # revealed: A | None
|
||||
## `is` in chained comparisons
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x_flag, y_flag = bool_instance(), bool_instance()
|
||||
x = True if x_flag else False
|
||||
y = True if y_flag else False
|
||||
|
||||
@@ -37,4 +54,26 @@ reveal_type(y) # revealed: bool
|
||||
if y is x is False: # Interpreted as `(y is x) and (x is False)`
|
||||
reveal_type(x) # revealed: Literal[False]
|
||||
reveal_type(y) # revealed: bool
|
||||
else:
|
||||
# The negation of the clause above is (y is not x) or (x is not False)
|
||||
# So we can't narrow the type of x or y here, because each arm of the `or` could be true
|
||||
reveal_type(x) # revealed: bool
|
||||
reveal_type(y) # revealed: bool
|
||||
```
|
||||
|
||||
## `is` in elif clause
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = None if bool_instance() else (1 if bool_instance() else True)
|
||||
|
||||
reveal_type(x) # revealed: None | Literal[1] | Literal[True]
|
||||
if x is None:
|
||||
reveal_type(x) # revealed: None
|
||||
elif x is True:
|
||||
reveal_type(x) # revealed: Literal[True]
|
||||
else:
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
```
|
||||
|
||||
@@ -5,10 +5,16 @@
|
||||
The type guard removes `None` from the union type:
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = None if flag else 1
|
||||
|
||||
if x is not None:
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
else:
|
||||
reveal_type(x) # revealed: None
|
||||
|
||||
reveal_type(x) # revealed: None | Literal[1]
|
||||
```
|
||||
@@ -16,18 +22,23 @@ reveal_type(x) # revealed: None | Literal[1]
|
||||
## `is not` for other singleton types
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = True if flag else False
|
||||
reveal_type(x) # revealed: bool
|
||||
|
||||
if x is not False:
|
||||
reveal_type(x) # revealed: Literal[True]
|
||||
else:
|
||||
reveal_type(x) # revealed: Literal[False]
|
||||
```
|
||||
|
||||
## `is not` for non-singleton types
|
||||
|
||||
Non-singleton types should *not* narrow the type: two instances of a
|
||||
non-singleton class may occupy different addresses in memory even if
|
||||
they compare equal.
|
||||
Non-singleton types should *not* narrow the type: two instances of a non-singleton class may occupy
|
||||
different addresses in memory even if they compare equal.
|
||||
|
||||
```py
|
||||
x = 345
|
||||
@@ -35,6 +46,27 @@ y = 345
|
||||
|
||||
if x is not y:
|
||||
reveal_type(x) # revealed: Literal[345]
|
||||
else:
|
||||
reveal_type(x) # revealed: Literal[345]
|
||||
```
|
||||
|
||||
## `is not` for other types
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class A: ...
|
||||
|
||||
x = A()
|
||||
y = x if bool_instance() else None
|
||||
|
||||
if y is not x:
|
||||
reveal_type(y) # revealed: A | None
|
||||
else:
|
||||
reveal_type(y) # revealed: A
|
||||
|
||||
reveal_type(y) # revealed: A | None
|
||||
```
|
||||
|
||||
## `is not` in chained comparisons
|
||||
@@ -42,6 +74,10 @@ if x is not y:
|
||||
The type guard removes `False` from the union type of the tested value only.
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x_flag, y_flag = bool_instance(), bool_instance()
|
||||
x = True if x_flag else False
|
||||
y = True if y_flag else False
|
||||
|
||||
@@ -51,4 +87,10 @@ reveal_type(y) # revealed: bool
|
||||
if y is not x is not False: # Interpreted as `(y is not x) and (x is not False)`
|
||||
reveal_type(x) # revealed: Literal[True]
|
||||
reveal_type(y) # revealed: bool
|
||||
else:
|
||||
# The negation of the clause above is (y is x) or (x is False)
|
||||
# So we can't narrow the type of x or y here, because each arm of the `or` could be true
|
||||
|
||||
reveal_type(x) # revealed: bool
|
||||
reveal_type(y) # revealed: bool
|
||||
```
|
||||
|
||||
@@ -3,7 +3,8 @@
|
||||
## Multiple negative contributions
|
||||
|
||||
```py
|
||||
def int_instance() -> int: ...
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
x = int_instance()
|
||||
|
||||
@@ -16,6 +17,10 @@ if x != 1:
|
||||
## Multiple negative contributions with simplification
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag1, flag2 = bool_instance(), bool_instance()
|
||||
x = 1 if flag1 else 2 if flag2 else 3
|
||||
|
||||
if x != 1:
|
||||
@@ -23,3 +28,29 @@ if x != 1:
|
||||
if x != 2:
|
||||
reveal_type(x) # revealed: Literal[3]
|
||||
```
|
||||
|
||||
## elif-else blocks
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = 1 if bool_instance() else 2 if bool_instance() else 3
|
||||
|
||||
if x != 1:
|
||||
reveal_type(x) # revealed: Literal[2, 3]
|
||||
if x == 2:
|
||||
# TODO should be `Literal[2]`
|
||||
reveal_type(x) # revealed: Literal[2, 3]
|
||||
elif x == 3:
|
||||
reveal_type(x) # revealed: Literal[3]
|
||||
else:
|
||||
reveal_type(x) # revealed: Never
|
||||
|
||||
elif x != 2:
|
||||
# TODO should be Literal[1]
|
||||
reveal_type(x) # revealed: Literal[1, 3]
|
||||
else:
|
||||
# TODO should be Never
|
||||
reveal_type(x) # revealed: Literal[1, 2, 3]
|
||||
```
|
||||
|
||||
@@ -0,0 +1,33 @@
|
||||
# Narrowing for `not` conditionals
|
||||
|
||||
The `not` operator negates a constraint.
|
||||
|
||||
## `not is None`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = None if bool_instance() else 1
|
||||
|
||||
if not x is None:
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
else:
|
||||
reveal_type(x) # revealed: None
|
||||
|
||||
reveal_type(x) # revealed: None | Literal[1]
|
||||
```
|
||||
|
||||
## `not isinstance`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = 1 if bool_instance() else "a"
|
||||
|
||||
if not isinstance(x, (int)):
|
||||
reveal_type(x) # revealed: Literal["a"]
|
||||
else:
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
```
|
||||
@@ -3,24 +3,42 @@
|
||||
## `x != None`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = None if flag else 1
|
||||
|
||||
if x != None:
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
else:
|
||||
# TODO should be None
|
||||
reveal_type(x) # revealed: None | Literal[1]
|
||||
```
|
||||
|
||||
## `!=` for other singleton types
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = True if flag else False
|
||||
|
||||
if x != False:
|
||||
reveal_type(x) # revealed: Literal[True]
|
||||
else:
|
||||
# TODO should be Literal[False]
|
||||
reveal_type(x) # revealed: bool
|
||||
```
|
||||
|
||||
## `x != y` where `y` is of literal type
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1 if flag else 2
|
||||
|
||||
if x != 1:
|
||||
@@ -30,6 +48,11 @@ if x != 1:
|
||||
## `x != y` where `y` is a single-valued type
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
class A: ...
|
||||
class B: ...
|
||||
|
||||
@@ -37,6 +60,25 @@ C = A if flag else B
|
||||
|
||||
if C != A:
|
||||
reveal_type(C) # revealed: Literal[B]
|
||||
else:
|
||||
# TODO should be Literal[A]
|
||||
reveal_type(C) # revealed: Literal[A, B]
|
||||
```
|
||||
|
||||
## `x != y` where `y` has multiple single-valued options
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = 1 if bool_instance() else 2
|
||||
y = 2 if bool_instance() else 3
|
||||
|
||||
if x != y:
|
||||
reveal_type(x) # revealed: Literal[1, 2]
|
||||
else:
|
||||
# TODO should be Literal[2]
|
||||
reveal_type(x) # revealed: Literal[1, 2]
|
||||
```
|
||||
|
||||
## `!=` for non-single-valued types
|
||||
@@ -44,11 +86,34 @@ if C != A:
|
||||
Only single-valued types should narrow the type:
|
||||
|
||||
```py
|
||||
def int_instance() -> int: ...
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
flag = bool_instance()
|
||||
x = int_instance() if flag else None
|
||||
y = int_instance()
|
||||
|
||||
if x != y:
|
||||
reveal_type(x) # revealed: int | None
|
||||
```
|
||||
|
||||
## Mix of single-valued and non-single-valued types
|
||||
|
||||
```py
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
x = 1 if bool_instance() else 2
|
||||
y = 2 if bool_instance() else int_instance()
|
||||
|
||||
if x != y:
|
||||
reveal_type(x) # revealed: Literal[1, 2]
|
||||
else:
|
||||
reveal_type(x) # revealed: Literal[1, 2]
|
||||
```
|
||||
|
||||
@@ -5,6 +5,11 @@ Narrowing for `isinstance(object, classinfo)` expressions.
|
||||
## `classinfo` is a single type
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
x = 1 if flag else "a"
|
||||
|
||||
if isinstance(x, int):
|
||||
@@ -21,15 +26,21 @@ if isinstance(x, (int, object)):
|
||||
|
||||
## `classinfo` is a tuple of types
|
||||
|
||||
Note: `isinstance(x, (int, str))` should not be confused with
|
||||
`isinstance(x, tuple[(int, str)])`. The former is equivalent to
|
||||
`isinstance(x, int | str)`:
|
||||
Note: `isinstance(x, (int, str))` should not be confused with `isinstance(x, tuple[(int, str)])`.
|
||||
The former is equivalent to `isinstance(x, int | str)`:
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag, flag1, flag2 = bool_instance(), bool_instance(), bool_instance()
|
||||
|
||||
x = 1 if flag else "a"
|
||||
|
||||
if isinstance(x, (int, str)):
|
||||
reveal_type(x) # revealed: Literal[1] | Literal["a"]
|
||||
else:
|
||||
reveal_type(x) # revealed: Never
|
||||
|
||||
if isinstance(x, (int, bytes)):
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
@@ -41,6 +52,8 @@ if isinstance(x, (bytes, str)):
|
||||
# one of the possibilities:
|
||||
if isinstance(x, (int, object)):
|
||||
reveal_type(x) # revealed: Literal[1] | Literal["a"]
|
||||
else:
|
||||
reveal_type(x) # revealed: Never
|
||||
|
||||
y = 1 if flag1 else "a" if flag2 else b"b"
|
||||
if isinstance(y, (int, str)):
|
||||
@@ -56,10 +69,17 @@ if isinstance(y, (str, bytes)):
|
||||
## `classinfo` is a nested tuple of types
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
x = 1 if flag else "a"
|
||||
|
||||
if isinstance(x, (bool, (bytes, int))):
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
else:
|
||||
reveal_type(x) # revealed: Literal["a"]
|
||||
```
|
||||
|
||||
## Class types
|
||||
@@ -67,6 +87,7 @@ if isinstance(x, (bool, (bytes, int))):
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
class C: ...
|
||||
|
||||
def get_object() -> object: ...
|
||||
|
||||
@@ -76,11 +97,26 @@ if isinstance(x, A):
|
||||
reveal_type(x) # revealed: A
|
||||
if isinstance(x, B):
|
||||
reveal_type(x) # revealed: A & B
|
||||
else:
|
||||
reveal_type(x) # revealed: A & ~B
|
||||
|
||||
if isinstance(x, (A, B)):
|
||||
reveal_type(x) # revealed: A | B
|
||||
elif isinstance(x, (A, C)):
|
||||
reveal_type(x) # revealed: C & ~A & ~B
|
||||
else:
|
||||
# TODO: Should be simplified to ~A & ~B & ~C
|
||||
reveal_type(x) # revealed: object & ~A & ~B & ~C
|
||||
```
|
||||
|
||||
## No narrowing for instances of `builtins.type`
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
t = type("t", (), {})
|
||||
|
||||
# This isn't testing what we want it to test if we infer anything more precise here:
|
||||
@@ -94,6 +130,11 @@ if isinstance(x, t):
|
||||
## Do not use custom `isinstance` for narrowing
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
def isinstance(x, t):
|
||||
return True
|
||||
|
||||
@@ -105,6 +146,11 @@ if isinstance(x, int):
|
||||
## Do support narrowing if `isinstance` is aliased
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
isinstance_alias = isinstance
|
||||
|
||||
x = 1 if flag else "a"
|
||||
@@ -117,6 +163,10 @@ if isinstance_alias(x, int):
|
||||
```py
|
||||
from builtins import isinstance as imported_isinstance
|
||||
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1 if flag else "a"
|
||||
if imported_isinstance(x, int):
|
||||
reveal_type(x) # revealed: Literal[1]
|
||||
@@ -125,6 +175,10 @@ if imported_isinstance(x, int):
|
||||
## Do not narrow if second argument is not a type
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1 if flag else "a"
|
||||
|
||||
# TODO: this should cause us to emit a diagnostic during
|
||||
@@ -141,6 +195,10 @@ if isinstance(x, "int"):
|
||||
## Do not narrow if there are keyword arguments
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
x = 1 if flag else "a"
|
||||
|
||||
# TODO: this should cause us to emit a diagnostic
|
||||
|
||||
@@ -0,0 +1,244 @@
|
||||
# Narrowing for `issubclass` checks
|
||||
|
||||
Narrowing for `issubclass(class, classinfo)` expressions.
|
||||
|
||||
## `classinfo` is a single type
|
||||
|
||||
### Basic example
|
||||
|
||||
```py
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else str
|
||||
|
||||
if issubclass(t, bytes):
|
||||
reveal_type(t) # revealed: Never
|
||||
|
||||
if issubclass(t, object):
|
||||
reveal_type(t) # revealed: Literal[int, str]
|
||||
|
||||
if issubclass(t, int):
|
||||
reveal_type(t) # revealed: Literal[int]
|
||||
else:
|
||||
reveal_type(t) # revealed: Literal[str]
|
||||
|
||||
if issubclass(t, str):
|
||||
reveal_type(t) # revealed: Literal[str]
|
||||
if issubclass(t, int):
|
||||
reveal_type(t) # revealed: Never
|
||||
```
|
||||
|
||||
### Proper narrowing in `elif` and `else` branches
|
||||
|
||||
```py
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else str if flag() else bytes
|
||||
|
||||
if issubclass(t, int):
|
||||
reveal_type(t) # revealed: Literal[int]
|
||||
else:
|
||||
reveal_type(t) # revealed: Literal[str, bytes]
|
||||
|
||||
if issubclass(t, int):
|
||||
reveal_type(t) # revealed: Literal[int]
|
||||
elif issubclass(t, str):
|
||||
reveal_type(t) # revealed: Literal[str]
|
||||
else:
|
||||
reveal_type(t) # revealed: Literal[bytes]
|
||||
```
|
||||
|
||||
### Multiple derived classes
|
||||
|
||||
```py
|
||||
class Base: ...
|
||||
class Derived1(Base): ...
|
||||
class Derived2(Base): ...
|
||||
class Unrelated: ...
|
||||
|
||||
def flag() -> bool: ...
|
||||
|
||||
t1 = Derived1 if flag() else Derived2
|
||||
|
||||
if issubclass(t1, Base):
|
||||
reveal_type(t1) # revealed: Literal[Derived1, Derived2]
|
||||
|
||||
if issubclass(t1, Derived1):
|
||||
reveal_type(t1) # revealed: Literal[Derived1]
|
||||
else:
|
||||
reveal_type(t1) # revealed: Literal[Derived2]
|
||||
|
||||
t2 = Derived1 if flag() else Base
|
||||
|
||||
if issubclass(t2, Base):
|
||||
reveal_type(t2) # revealed: Literal[Derived1, Base]
|
||||
|
||||
t3 = Derived1 if flag() else Unrelated
|
||||
|
||||
if issubclass(t3, Base):
|
||||
reveal_type(t3) # revealed: Literal[Derived1]
|
||||
else:
|
||||
reveal_type(t3) # revealed: Literal[Unrelated]
|
||||
```
|
||||
|
||||
### Narrowing for non-literals
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
class B: ...
|
||||
|
||||
def get_class() -> type[object]: ...
|
||||
|
||||
t = get_class()
|
||||
|
||||
if issubclass(t, A):
|
||||
reveal_type(t) # revealed: type[A]
|
||||
if issubclass(t, B):
|
||||
reveal_type(t) # revealed: type[A] & type[B]
|
||||
else:
|
||||
reveal_type(t) # revealed: type[object] & ~type[A]
|
||||
```
|
||||
|
||||
### Handling of `None`
|
||||
|
||||
```py
|
||||
from types import NoneType
|
||||
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else NoneType
|
||||
|
||||
if issubclass(t, NoneType):
|
||||
reveal_type(t) # revealed: Literal[NoneType]
|
||||
|
||||
if issubclass(t, type(None)):
|
||||
# TODO: this should be just `Literal[NoneType]`
|
||||
reveal_type(t) # revealed: Literal[int, NoneType]
|
||||
```
|
||||
|
||||
## `classinfo` contains multiple types
|
||||
|
||||
### (Nested) tuples of types
|
||||
|
||||
```py
|
||||
class Unrelated: ...
|
||||
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else str if flag() else bytes
|
||||
|
||||
if issubclass(t, (int, (Unrelated, (bytes,)))):
|
||||
reveal_type(t) # revealed: Literal[int, bytes]
|
||||
else:
|
||||
reveal_type(t) # revealed: Literal[str]
|
||||
```
|
||||
|
||||
## Special cases
|
||||
|
||||
### Emit a diagnostic if the first argument is of wrong type
|
||||
|
||||
#### Too wide
|
||||
|
||||
`type[object]` is a subtype of `object`, but not every `object` can be passed as the first argument
|
||||
to `issubclass`:
|
||||
|
||||
```py
|
||||
class A: ...
|
||||
|
||||
def get_object() -> object: ...
|
||||
|
||||
t = get_object()
|
||||
|
||||
# TODO: we should emit a diagnostic here
|
||||
if issubclass(t, A):
|
||||
reveal_type(t) # revealed: type[A]
|
||||
```
|
||||
|
||||
#### Wrong
|
||||
|
||||
`Literal[1]` and `type` are entirely disjoint, so the inferred type of `Literal[1] & type[int]` is
|
||||
eagerly simplified to `Never` as a result of the type narrowing in the `if issubclass(t, int)`
|
||||
branch:
|
||||
|
||||
```py
|
||||
t = 1
|
||||
|
||||
# TODO: we should emit a diagnostic here
|
||||
if issubclass(t, int):
|
||||
reveal_type(t) # revealed: Never
|
||||
```
|
||||
|
||||
### Do not use custom `issubclass` for narrowing
|
||||
|
||||
```py
|
||||
def issubclass(c, ci):
|
||||
return True
|
||||
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else str
|
||||
if issubclass(t, int):
|
||||
reveal_type(t) # revealed: Literal[int, str]
|
||||
```
|
||||
|
||||
### Do support narrowing if `issubclass` is aliased
|
||||
|
||||
```py
|
||||
issubclass_alias = issubclass
|
||||
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else str
|
||||
if issubclass_alias(t, int):
|
||||
reveal_type(t) # revealed: Literal[int]
|
||||
```
|
||||
|
||||
### Do support narrowing if `issubclass` is imported
|
||||
|
||||
```py
|
||||
from builtins import issubclass as imported_issubclass
|
||||
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else str
|
||||
if imported_issubclass(t, int):
|
||||
reveal_type(t) # revealed: Literal[int]
|
||||
```
|
||||
|
||||
### Do not narrow if second argument is not a proper `classinfo` argument
|
||||
|
||||
```py
|
||||
from typing import Any
|
||||
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else str
|
||||
|
||||
# TODO: this should cause us to emit a diagnostic during
|
||||
# type checking
|
||||
if issubclass(t, "str"):
|
||||
reveal_type(t) # revealed: Literal[int, str]
|
||||
|
||||
# TODO: this should cause us to emit a diagnostic during
|
||||
# type checking
|
||||
if issubclass(t, (bytes, "str")):
|
||||
reveal_type(t) # revealed: Literal[int, str]
|
||||
|
||||
# TODO: this should cause us to emit a diagnostic during
|
||||
# type checking
|
||||
if issubclass(t, Any):
|
||||
reveal_type(t) # revealed: Literal[int, str]
|
||||
```
|
||||
|
||||
### Do not narrow if there are keyword arguments
|
||||
|
||||
```py
|
||||
def flag() -> bool: ...
|
||||
|
||||
t = int if flag() else str
|
||||
|
||||
# TODO: this should cause us to emit a diagnostic
|
||||
# (`issubclass` has no `foo` parameter)
|
||||
if issubclass(t, int, foo="bar"):
|
||||
reveal_type(t) # revealed: Literal[int, str]
|
||||
```
|
||||
@@ -3,6 +3,11 @@
|
||||
## Single `match` pattern
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
x = None if flag else 1
|
||||
reveal_type(x) # revealed: None | Literal[1]
|
||||
|
||||
|
||||
@@ -0,0 +1,136 @@
|
||||
# Implicit globals from `types.ModuleType`
|
||||
|
||||
## Implicit `ModuleType` globals
|
||||
|
||||
All modules are instances of `types.ModuleType`. If a name can't be found in any local or global
|
||||
scope, we look it up as an attribute on `types.ModuleType` in typeshed before deciding that the name
|
||||
is unbound.
|
||||
|
||||
```py
|
||||
reveal_type(__name__) # revealed: str
|
||||
reveal_type(__file__) # revealed: str | None
|
||||
reveal_type(__loader__) # revealed: LoaderProtocol | None
|
||||
reveal_type(__package__) # revealed: str | None
|
||||
reveal_type(__doc__) # revealed: str | None
|
||||
|
||||
# TODO: Should be `ModuleSpec | None`
|
||||
# (needs support for `*` imports)
|
||||
reveal_type(__spec__) # revealed: Unknown | None
|
||||
|
||||
# TODO: generics
|
||||
reveal_type(__path__) # revealed: @Todo
|
||||
|
||||
class X:
|
||||
reveal_type(__name__) # revealed: str
|
||||
|
||||
def foo():
|
||||
reveal_type(__name__) # revealed: str
|
||||
```
|
||||
|
||||
However, three attributes on `types.ModuleType` are not present as implicit module globals; these
|
||||
are excluded:
|
||||
|
||||
```py path=unbound_dunders.py
|
||||
# error: [unresolved-reference]
|
||||
# revealed: Unknown
|
||||
reveal_type(__getattr__)
|
||||
|
||||
# error: [unresolved-reference]
|
||||
# revealed: Unknown
|
||||
reveal_type(__dict__)
|
||||
|
||||
# error: [unresolved-reference]
|
||||
# revealed: Unknown
|
||||
reveal_type(__init__)
|
||||
```
|
||||
|
||||
## Accessed as attributes
|
||||
|
||||
`ModuleType` attributes can also be accessed as attributes on module-literal types. The special
|
||||
attributes `__dict__` and `__init__`, and all attributes on `builtins.object`, can also be accessed
|
||||
as attributes on module-literal types, despite the fact that these are inaccessible as globals from
|
||||
inside the module:
|
||||
|
||||
```py
|
||||
import typing
|
||||
|
||||
reveal_type(typing.__name__) # revealed: str
|
||||
reveal_type(typing.__init__) # revealed: Literal[__init__]
|
||||
|
||||
# These come from `builtins.object`, not `types.ModuleType`:
|
||||
reveal_type(typing.__eq__) # revealed: Literal[__eq__]
|
||||
|
||||
reveal_type(typing.__class__) # revealed: Literal[type]
|
||||
|
||||
# TODO: needs support for attribute access on instances, properties and generics;
|
||||
# should be `dict[str, Any]`
|
||||
reveal_type(typing.__dict__) # revealed: @Todo
|
||||
```
|
||||
|
||||
Typeshed includes a fake `__getattr__` method in the stub for `types.ModuleType` to help out with
|
||||
dynamic imports; but we ignore that for module-literal types where we know exactly which module
|
||||
we're dealing with:
|
||||
|
||||
```py path=__getattr__.py
|
||||
import typing
|
||||
|
||||
reveal_type(typing.__getattr__) # revealed: Unknown
|
||||
```
|
||||
|
||||
## `types.ModuleType.__dict__` takes precedence over global variable `__dict__`
|
||||
|
||||
It's impossible to override the `__dict__` attribute of `types.ModuleType` instances from inside the
|
||||
module; we should prioritise the attribute in the `types.ModuleType` stub over a variable named
|
||||
`__dict__` in the module's global namespace:
|
||||
|
||||
```py path=foo.py
|
||||
__dict__ = "foo"
|
||||
|
||||
reveal_type(__dict__) # revealed: Literal["foo"]
|
||||
```
|
||||
|
||||
```py path=bar.py
|
||||
import foo
|
||||
from foo import __dict__ as foo_dict
|
||||
|
||||
# TODO: needs support for attribute access on instances, properties, and generics;
|
||||
# should be `dict[str, Any]` for both of these:
|
||||
reveal_type(foo.__dict__) # revealed: @Todo
|
||||
reveal_type(foo_dict) # revealed: @Todo
|
||||
```
|
||||
|
||||
## Conditionally global or `ModuleType` attribute
|
||||
|
||||
Attributes overridden in the module namespace take priority. If a builtin name is conditionally
|
||||
defined as a global, however, a name lookup should union the `ModuleType` type with the
|
||||
conditionally defined type:
|
||||
|
||||
```py
|
||||
__file__ = 42
|
||||
|
||||
def returns_bool() -> bool:
|
||||
return True
|
||||
|
||||
if returns_bool():
|
||||
__name__ = 1
|
||||
|
||||
reveal_type(__file__) # revealed: Literal[42]
|
||||
reveal_type(__name__) # revealed: Literal[1] | str
|
||||
```
|
||||
|
||||
## Conditionally global or `ModuleType` attribute, with annotation
|
||||
|
||||
The same is true if the name is annotated:
|
||||
|
||||
```py
|
||||
__file__: int = 42
|
||||
|
||||
def returns_bool() -> bool:
|
||||
return True
|
||||
|
||||
if returns_bool():
|
||||
__name__: int = 1
|
||||
|
||||
reveal_type(__file__) # revealed: Literal[42]
|
||||
reveal_type(__name__) # revealed: Literal[1] | str
|
||||
```
|
||||
@@ -2,7 +2,8 @@
|
||||
|
||||
## Parameter
|
||||
|
||||
Parameter `x` of type `str` is shadowed and reassigned with a new `int` value inside the function. No diagnostics should be generated.
|
||||
Parameter `x` of type `str` is shadowed and reassigned with a new `int` value inside the function.
|
||||
No diagnostics should be generated.
|
||||
|
||||
```py path=a.py
|
||||
def f(x: str):
|
||||
|
||||
@@ -3,6 +3,11 @@
|
||||
## Shadow after incompatible declarations is OK
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
if flag:
|
||||
x: str
|
||||
else:
|
||||
|
||||
@@ -2,10 +2,16 @@
|
||||
|
||||
## Cyclical class definition
|
||||
|
||||
In type stubs, classes can reference themselves in their base class definitions. For example, in `typeshed`, we have `class str(Sequence[str]): ...`.
|
||||
In type stubs, classes can reference themselves in their base class definitions. For example, in
|
||||
`typeshed`, we have `class str(Sequence[str]): ...`.
|
||||
|
||||
```py path=a.pyi
|
||||
class C(C): ...
|
||||
class Foo[T]: ...
|
||||
|
||||
reveal_type(C) # revealed: Literal[C]
|
||||
# TODO: actually is subscriptable
|
||||
# error: [non-subscriptable]
|
||||
class Bar(Foo[Bar]): ...
|
||||
|
||||
reveal_type(Bar) # revealed: Literal[Bar]
|
||||
reveal_type(Bar.__mro__) # revealed: tuple[Literal[Bar], Unknown, Literal[object]]
|
||||
```
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Bytes subscript
|
||||
# Bytes subscripts
|
||||
|
||||
## Simple
|
||||
## Indexing
|
||||
|
||||
```py
|
||||
b = b"\x00abc\xff"
|
||||
@@ -21,14 +21,37 @@ reveal_type(x) # revealed: Unknown
|
||||
|
||||
y = b[-6] # error: [index-out-of-bounds] "Index -6 is out of bounds for bytes literal `Literal[b"\x00abc\xff"]` with length 5"
|
||||
reveal_type(y) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Function return
|
||||
|
||||
```py
|
||||
def int_instance() -> int: ...
|
||||
def int_instance() -> int:
|
||||
return 42
|
||||
|
||||
a = b"abcde"[int_instance()]
|
||||
# TODO: Support overloads... Should be `bytes`
|
||||
reveal_type(a) # revealed: @Todo
|
||||
```
|
||||
|
||||
## Slices
|
||||
|
||||
```py
|
||||
b = b"\x00abc\xff"
|
||||
|
||||
reveal_type(b[0:2]) # revealed: Literal[b"\x00a"]
|
||||
reveal_type(b[-3:]) # revealed: Literal[b"bc\xff"]
|
||||
|
||||
b[0:4:0] # error: [zero-stepsize-in-slice]
|
||||
b[:4:0] # error: [zero-stepsize-in-slice]
|
||||
b[0::0] # error: [zero-stepsize-in-slice]
|
||||
b[::0] # error: [zero-stepsize-in-slice]
|
||||
|
||||
def int_instance() -> int: ...
|
||||
|
||||
byte_slice1 = b[int_instance() : int_instance()]
|
||||
# TODO: Support overloads... Should be `bytes`
|
||||
reveal_type(byte_slice1) # revealed: @Todo
|
||||
|
||||
def bytes_instance() -> bytes: ...
|
||||
|
||||
byte_slice2 = bytes_instance()[0:5]
|
||||
# TODO: Support overloads... Should be `bytes`
|
||||
reveal_type(byte_slice2) # revealed: @Todo
|
||||
```
|
||||
|
||||
@@ -39,7 +39,8 @@ reveal_type(UnionClassGetItem[0]) # revealed: str | int
|
||||
## Class getitem with class union
|
||||
|
||||
```py
|
||||
flag = True
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
class A:
|
||||
def __class_getitem__(cls, item: int) -> str:
|
||||
@@ -49,7 +50,7 @@ class B:
|
||||
def __class_getitem__(cls, item: int) -> int:
|
||||
return item
|
||||
|
||||
x = A if flag else B
|
||||
x = A if bool_instance() else B
|
||||
|
||||
reveal_type(x) # revealed: Literal[A, B]
|
||||
reveal_type(x[0]) # revealed: str | int
|
||||
@@ -68,8 +69,8 @@ if flag:
|
||||
else:
|
||||
class Spam: ...
|
||||
|
||||
# error: [call-non-callable] "Method `__class_getitem__` of type `Literal[__class_getitem__] | Unbound` is not callable on object of type `Literal[Spam, Spam]`"
|
||||
# revealed: str | Unknown
|
||||
# error: [call-possibly-unbound-method] "Method `__class_getitem__` of type `Literal[Spam, Spam]` is possibly unbound"
|
||||
# revealed: str
|
||||
reveal_type(Spam[42])
|
||||
```
|
||||
|
||||
|
||||
@@ -23,8 +23,7 @@ reveal_type(x["a"]) # revealed: @Todo
|
||||
|
||||
## Assignments within list assignment
|
||||
|
||||
In assignment, we might also have a named assignment.
|
||||
This should also get type checked.
|
||||
In assignment, we might also have a named assignment. This should also get type checked.
|
||||
|
||||
```py
|
||||
x = [1, 2, 3]
|
||||
|
||||
@@ -0,0 +1,13 @@
|
||||
# Stepsize zero in slices
|
||||
|
||||
We raise a `zero-stepsize-in-slice` diagnostic when trying to slice a literal string, bytes, or
|
||||
tuple with a step size of zero (see tests in `string.md`, `bytes.md` and `tuple.md`). But we don't
|
||||
want to raise this diagnostic when slicing a custom type:
|
||||
|
||||
```py
|
||||
class MySequence:
|
||||
def __getitem__(self, s: slice) -> int:
|
||||
return 0
|
||||
|
||||
MySequence()[0:1:0] # No error
|
||||
```
|
||||
@@ -1,6 +1,6 @@
|
||||
# Subscript on strings
|
||||
# String subscripts
|
||||
|
||||
## Simple
|
||||
## Indexing
|
||||
|
||||
```py
|
||||
s = "abcde"
|
||||
@@ -18,14 +18,82 @@ reveal_type(a) # revealed: Unknown
|
||||
|
||||
b = s[-8] # error: [index-out-of-bounds] "Index -8 is out of bounds for string `Literal["abcde"]` with length 5"
|
||||
reveal_type(b) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Function return
|
||||
|
||||
```py
|
||||
def int_instance() -> int: ...
|
||||
|
||||
a = "abcde"[int_instance()]
|
||||
# TODO: Support overloads... Should be `str`
|
||||
reveal_type(a) # revealed: @Todo
|
||||
```
|
||||
|
||||
## Slices
|
||||
|
||||
```py
|
||||
s = "abcde"
|
||||
|
||||
reveal_type(s[0:0]) # revealed: Literal[""]
|
||||
reveal_type(s[0:1]) # revealed: Literal["a"]
|
||||
reveal_type(s[0:2]) # revealed: Literal["ab"]
|
||||
reveal_type(s[0:5]) # revealed: Literal["abcde"]
|
||||
reveal_type(s[0:6]) # revealed: Literal["abcde"]
|
||||
reveal_type(s[1:3]) # revealed: Literal["bc"]
|
||||
|
||||
reveal_type(s[-3:5]) # revealed: Literal["cde"]
|
||||
reveal_type(s[-4:-2]) # revealed: Literal["bc"]
|
||||
reveal_type(s[-10:10]) # revealed: Literal["abcde"]
|
||||
|
||||
reveal_type(s[0:]) # revealed: Literal["abcde"]
|
||||
reveal_type(s[2:]) # revealed: Literal["cde"]
|
||||
reveal_type(s[5:]) # revealed: Literal[""]
|
||||
reveal_type(s[:2]) # revealed: Literal["ab"]
|
||||
reveal_type(s[:0]) # revealed: Literal[""]
|
||||
reveal_type(s[:2]) # revealed: Literal["ab"]
|
||||
reveal_type(s[:10]) # revealed: Literal["abcde"]
|
||||
reveal_type(s[:]) # revealed: Literal["abcde"]
|
||||
|
||||
reveal_type(s[::-1]) # revealed: Literal["edcba"]
|
||||
reveal_type(s[::2]) # revealed: Literal["ace"]
|
||||
reveal_type(s[-2:-5:-1]) # revealed: Literal["dcb"]
|
||||
reveal_type(s[::-2]) # revealed: Literal["eca"]
|
||||
reveal_type(s[-1::-3]) # revealed: Literal["eb"]
|
||||
|
||||
reveal_type(s[None:2:None]) # revealed: Literal["ab"]
|
||||
reveal_type(s[1:None:1]) # revealed: Literal["bcde"]
|
||||
reveal_type(s[None:None:None]) # revealed: Literal["abcde"]
|
||||
|
||||
start = 1
|
||||
stop = None
|
||||
step = 2
|
||||
reveal_type(s[start:stop:step]) # revealed: Literal["bd"]
|
||||
|
||||
reveal_type(s[False:True]) # revealed: Literal["a"]
|
||||
reveal_type(s[True:3]) # revealed: Literal["bc"]
|
||||
|
||||
s[0:4:0] # error: [zero-stepsize-in-slice]
|
||||
s[:4:0] # error: [zero-stepsize-in-slice]
|
||||
s[0::0] # error: [zero-stepsize-in-slice]
|
||||
s[::0] # error: [zero-stepsize-in-slice]
|
||||
|
||||
def int_instance() -> int: ...
|
||||
|
||||
substring1 = s[int_instance() : int_instance()]
|
||||
# TODO: Support overloads... Should be `LiteralString`
|
||||
reveal_type(substring1) # revealed: @Todo
|
||||
|
||||
def str_instance() -> str: ...
|
||||
|
||||
substring2 = str_instance()[0:5]
|
||||
# TODO: Support overloads... Should be `str`
|
||||
reveal_type(substring2) # revealed: @Todo
|
||||
```
|
||||
|
||||
## Unsupported slice types
|
||||
|
||||
```py
|
||||
# TODO: It would be great if we raised an error here. This can be done once
|
||||
# we have support for overloads and generics, and once typeshed has a more
|
||||
# precise annotation for `str.__getitem__`, that makes use of the generic
|
||||
# `slice[..]` type. We could then infer `slice[str, str]` here and see that
|
||||
# it doesn't match the signature of `str.__getitem__`.
|
||||
"foo"["bar":"baz"]
|
||||
```
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
# Tuple subscripts
|
||||
|
||||
## Basic
|
||||
## Indexing
|
||||
|
||||
```py
|
||||
t = (1, "a", "b")
|
||||
@@ -10,9 +10,66 @@ reveal_type(t[1]) # revealed: Literal["a"]
|
||||
reveal_type(t[-1]) # revealed: Literal["b"]
|
||||
reveal_type(t[-2]) # revealed: Literal["a"]
|
||||
|
||||
reveal_type(t[False]) # revealed: Literal[1]
|
||||
reveal_type(t[True]) # revealed: Literal["a"]
|
||||
|
||||
a = t[4] # error: [index-out-of-bounds]
|
||||
reveal_type(a) # revealed: Unknown
|
||||
|
||||
b = t[-4] # error: [index-out-of-bounds]
|
||||
reveal_type(b) # revealed: Unknown
|
||||
```
|
||||
|
||||
## Slices
|
||||
|
||||
```py
|
||||
t = (1, "a", None, b"b")
|
||||
|
||||
reveal_type(t[0:0]) # revealed: tuple[()]
|
||||
reveal_type(t[0:1]) # revealed: tuple[Literal[1]]
|
||||
reveal_type(t[0:2]) # revealed: tuple[Literal[1], Literal["a"]]
|
||||
reveal_type(t[0:4]) # revealed: tuple[Literal[1], Literal["a"], None, Literal[b"b"]]
|
||||
reveal_type(t[0:5]) # revealed: tuple[Literal[1], Literal["a"], None, Literal[b"b"]]
|
||||
reveal_type(t[1:3]) # revealed: tuple[Literal["a"], None]
|
||||
|
||||
reveal_type(t[-2:4]) # revealed: tuple[None, Literal[b"b"]]
|
||||
reveal_type(t[-3:-1]) # revealed: tuple[Literal["a"], None]
|
||||
reveal_type(t[-10:10]) # revealed: tuple[Literal[1], Literal["a"], None, Literal[b"b"]]
|
||||
|
||||
reveal_type(t[0:]) # revealed: tuple[Literal[1], Literal["a"], None, Literal[b"b"]]
|
||||
reveal_type(t[2:]) # revealed: tuple[None, Literal[b"b"]]
|
||||
reveal_type(t[4:]) # revealed: tuple[()]
|
||||
reveal_type(t[:0]) # revealed: tuple[()]
|
||||
reveal_type(t[:2]) # revealed: tuple[Literal[1], Literal["a"]]
|
||||
reveal_type(t[:10]) # revealed: tuple[Literal[1], Literal["a"], None, Literal[b"b"]]
|
||||
reveal_type(t[:]) # revealed: tuple[Literal[1], Literal["a"], None, Literal[b"b"]]
|
||||
|
||||
reveal_type(t[::-1]) # revealed: tuple[Literal[b"b"], None, Literal["a"], Literal[1]]
|
||||
reveal_type(t[::2]) # revealed: tuple[Literal[1], None]
|
||||
reveal_type(t[-2:-5:-1]) # revealed: tuple[None, Literal["a"], Literal[1]]
|
||||
reveal_type(t[::-2]) # revealed: tuple[Literal[b"b"], Literal["a"]]
|
||||
reveal_type(t[-1::-3]) # revealed: tuple[Literal[b"b"], Literal[1]]
|
||||
|
||||
reveal_type(t[None:2:None]) # revealed: tuple[Literal[1], Literal["a"]]
|
||||
reveal_type(t[1:None:1]) # revealed: tuple[Literal["a"], None, Literal[b"b"]]
|
||||
reveal_type(t[None:None:None]) # revealed: tuple[Literal[1], Literal["a"], None, Literal[b"b"]]
|
||||
|
||||
start = 1
|
||||
stop = None
|
||||
step = 2
|
||||
reveal_type(t[start:stop:step]) # revealed: tuple[Literal["a"], Literal[b"b"]]
|
||||
|
||||
reveal_type(t[False:True]) # revealed: tuple[Literal[1]]
|
||||
reveal_type(t[True:3]) # revealed: tuple[Literal["a"], None]
|
||||
|
||||
t[0:4:0] # error: [zero-stepsize-in-slice]
|
||||
t[:4:0] # error: [zero-stepsize-in-slice]
|
||||
t[0::0] # error: [zero-stepsize-in-slice]
|
||||
t[::0] # error: [zero-stepsize-in-slice]
|
||||
|
||||
def int_instance() -> int: ...
|
||||
|
||||
tuple_slice = t[int_instance() : int_instance()]
|
||||
# TODO: Support overloads... Should be `tuple[Literal[1, 'a', b"b"] | None, ...]`
|
||||
reveal_type(tuple_slice) # revealed: @Todo
|
||||
```
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
# Unary Operations
|
||||
|
||||
```py
|
||||
from typing import Literal
|
||||
|
||||
class Number:
|
||||
def __init__(self, value: int):
|
||||
self.value = 1
|
||||
@@ -18,7 +20,7 @@ a = Number()
|
||||
|
||||
reveal_type(+a) # revealed: int
|
||||
reveal_type(-a) # revealed: int
|
||||
reveal_type(~a) # revealed: @Todo
|
||||
reveal_type(~a) # revealed: Literal[True]
|
||||
|
||||
class NoDunder: ...
|
||||
|
||||
|
||||
@@ -37,6 +37,11 @@ y = 1
|
||||
## Union
|
||||
|
||||
```py
|
||||
def bool_instance() -> bool:
|
||||
return True
|
||||
|
||||
flag = bool_instance()
|
||||
|
||||
if flag:
|
||||
p = 1
|
||||
q = 3.3
|
||||
|
||||
@@ -81,8 +81,7 @@ reveal_type(b) # revealed: Literal[2]
|
||||
|
||||
```py
|
||||
# TODO: Add diagnostic (need more values to unpack)
|
||||
# TODO: Remove 'not-iterable' diagnostic
|
||||
[a, *b, c, d] = (1, 2) # error: "Object of type `None` is not iterable"
|
||||
[a, *b, c, d] = (1, 2)
|
||||
reveal_type(a) # revealed: Literal[1]
|
||||
# TODO: Should be list[Any] once support for assigning to starred expression is added
|
||||
reveal_type(b) # revealed: @Todo
|
||||
@@ -93,7 +92,7 @@ reveal_type(d) # revealed: Unknown
|
||||
### Starred expression (2)
|
||||
|
||||
```py
|
||||
[a, *b, c] = (1, 2) # error: "Object of type `None` is not iterable"
|
||||
[a, *b, c] = (1, 2)
|
||||
reveal_type(a) # revealed: Literal[1]
|
||||
# TODO: Should be list[Any] once support for assigning to starred expression is added
|
||||
reveal_type(b) # revealed: @Todo
|
||||
@@ -103,8 +102,7 @@ reveal_type(c) # revealed: Literal[2]
|
||||
### Starred expression (3)
|
||||
|
||||
```py
|
||||
# TODO: Remove 'not-iterable' diagnostic
|
||||
[a, *b, c] = (1, 2, 3) # error: "Object of type `None` is not iterable"
|
||||
[a, *b, c] = (1, 2, 3)
|
||||
reveal_type(a) # revealed: Literal[1]
|
||||
# TODO: Should be list[int] once support for assigning to starred expression is added
|
||||
reveal_type(b) # revealed: @Todo
|
||||
@@ -114,8 +112,7 @@ reveal_type(c) # revealed: Literal[3]
|
||||
### Starred expression (4)
|
||||
|
||||
```py
|
||||
# TODO: Remove 'not-iterable' diagnostic
|
||||
[a, *b, c, d] = (1, 2, 3, 4, 5, 6) # error: "Object of type `None` is not iterable"
|
||||
[a, *b, c, d] = (1, 2, 3, 4, 5, 6)
|
||||
reveal_type(a) # revealed: Literal[1]
|
||||
# TODO: Should be list[int] once support for assigning to starred expression is added
|
||||
reveal_type(b) # revealed: @Todo
|
||||
@@ -126,22 +123,29 @@ reveal_type(d) # revealed: Literal[6]
|
||||
### Starred expression (5)
|
||||
|
||||
```py
|
||||
# TODO: Remove 'not-iterable' diagnostic
|
||||
[a, b, *c] = (1, 2, 3, 4) # error: "Object of type `None` is not iterable"
|
||||
[a, b, *c] = (1, 2, 3, 4)
|
||||
reveal_type(a) # revealed: Literal[1]
|
||||
reveal_type(b) # revealed: Literal[2]
|
||||
# TODO: Should be list[int] once support for assigning to starred expression is added
|
||||
reveal_type(c) # revealed: @Todo
|
||||
```
|
||||
|
||||
### Non-iterable unpacking
|
||||
|
||||
TODO: Remove duplicate diagnostics. This is happening because for a sequence-like
|
||||
assignment target, multiple definitions are created and the inference engine runs
|
||||
on each of them which results in duplicate diagnostics.
|
||||
### Starred expression (6)
|
||||
|
||||
```py
|
||||
# TODO: Add diagnostic (need more values to unpack)
|
||||
(a, b, c, *d, e, f) = (1,)
|
||||
reveal_type(a) # revealed: Literal[1]
|
||||
reveal_type(b) # revealed: Unknown
|
||||
reveal_type(c) # revealed: Unknown
|
||||
reveal_type(d) # revealed: @Todo
|
||||
reveal_type(e) # revealed: Unknown
|
||||
reveal_type(f) # revealed: Unknown
|
||||
```
|
||||
|
||||
### Non-iterable unpacking
|
||||
|
||||
```py
|
||||
# error: "Object of type `Literal[1]` is not iterable"
|
||||
# error: "Object of type `Literal[1]` is not iterable"
|
||||
a, b = 1
|
||||
reveal_type(a) # revealed: Unknown
|
||||
@@ -215,8 +219,7 @@ reveal_type(b) # revealed: LiteralString
|
||||
|
||||
```py
|
||||
# TODO: Add diagnostic (need more values to unpack)
|
||||
# TODO: Remove 'not-iterable' diagnostic
|
||||
(a, *b, c, d) = "ab" # error: "Object of type `None` is not iterable"
|
||||
(a, *b, c, d) = "ab"
|
||||
reveal_type(a) # revealed: LiteralString
|
||||
# TODO: Should be list[LiteralString] once support for assigning to starred expression is added
|
||||
reveal_type(b) # revealed: @Todo
|
||||
@@ -227,7 +230,7 @@ reveal_type(d) # revealed: Unknown
|
||||
### Starred expression (2)
|
||||
|
||||
```py
|
||||
(a, *b, c) = "ab" # error: "Object of type `None` is not iterable"
|
||||
(a, *b, c) = "ab"
|
||||
reveal_type(a) # revealed: LiteralString
|
||||
# TODO: Should be list[Any] once support for assigning to starred expression is added
|
||||
reveal_type(b) # revealed: @Todo
|
||||
@@ -237,8 +240,7 @@ reveal_type(c) # revealed: LiteralString
|
||||
### Starred expression (3)
|
||||
|
||||
```py
|
||||
# TODO: Remove 'not-iterable' diagnostic
|
||||
(a, *b, c) = "abc" # error: "Object of type `None` is not iterable"
|
||||
(a, *b, c) = "abc"
|
||||
reveal_type(a) # revealed: LiteralString
|
||||
# TODO: Should be list[LiteralString] once support for assigning to starred expression is added
|
||||
reveal_type(b) # revealed: @Todo
|
||||
@@ -248,8 +250,7 @@ reveal_type(c) # revealed: LiteralString
|
||||
### Starred expression (4)
|
||||
|
||||
```py
|
||||
# TODO: Remove 'not-iterable' diagnostic
|
||||
(a, *b, c, d) = "abcdef" # error: "Object of type `None` is not iterable"
|
||||
(a, *b, c, d) = "abcdef"
|
||||
reveal_type(a) # revealed: LiteralString
|
||||
# TODO: Should be list[LiteralString] once support for assigning to starred expression is added
|
||||
reveal_type(b) # revealed: @Todo
|
||||
@@ -260,8 +261,7 @@ reveal_type(d) # revealed: LiteralString
|
||||
### Starred expression (5)
|
||||
|
||||
```py
|
||||
# TODO: Remove 'not-iterable' diagnostic
|
||||
(a, b, *c) = "abcd" # error: "Object of type `None` is not iterable"
|
||||
(a, b, *c) = "abcd"
|
||||
reveal_type(a) # revealed: LiteralString
|
||||
reveal_type(b) # revealed: LiteralString
|
||||
# TODO: Should be list[int] once support for assigning to starred expression is added
|
||||
|
||||
@@ -0,0 +1,21 @@
|
||||
# Async with statements
|
||||
|
||||
## Basic `async with` statement
|
||||
|
||||
The type of the target variable in a `with` statement should be the return type from the context
|
||||
manager's `__aenter__` method. However, `async with` statements aren't supported yet. This test
|
||||
asserts that it doesn't emit any context manager-related errors.
|
||||
|
||||
```py
|
||||
class Target: ...
|
||||
|
||||
class Manager:
|
||||
async def __aenter__(self) -> Target:
|
||||
return Target()
|
||||
|
||||
async def __aexit__(self, exc_type, exc_value, traceback): ...
|
||||
|
||||
async def test():
|
||||
async with Manager() as f:
|
||||
reveal_type(f) # revealed: @Todo
|
||||
```
|
||||
141
crates/red_knot_python_semantic/resources/mdtest/with/with.md
Normal file
141
crates/red_knot_python_semantic/resources/mdtest/with/with.md
Normal file
@@ -0,0 +1,141 @@
|
||||
# With statements
|
||||
|
||||
## Basic `with` statement
|
||||
|
||||
The type of the target variable in a `with` statement is the return type from the context manager's
|
||||
`__enter__` method.
|
||||
|
||||
```py
|
||||
class Target: ...
|
||||
|
||||
class Manager:
|
||||
def __enter__(self) -> Target:
|
||||
return Target()
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback): ...
|
||||
|
||||
with Manager() as f:
|
||||
reveal_type(f) # revealed: Target
|
||||
```
|
||||
|
||||
## Union context manager
|
||||
|
||||
```py
|
||||
def coinflip() -> bool:
|
||||
return True
|
||||
|
||||
class Manager1:
|
||||
def __enter__(self) -> str:
|
||||
return "foo"
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback): ...
|
||||
|
||||
class Manager2:
|
||||
def __enter__(self) -> int:
|
||||
return 42
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback): ...
|
||||
|
||||
context_expr = Manager1() if coinflip() else Manager2()
|
||||
|
||||
with context_expr as f:
|
||||
reveal_type(f) # revealed: str | int
|
||||
```
|
||||
|
||||
## Context manager without an `__enter__` or `__exit__` method
|
||||
|
||||
```py
|
||||
class Manager: ...
|
||||
|
||||
# error: [invalid-context-manager] "Object of type `Manager` cannot be used with `with` because it doesn't implement `__enter__` and `__exit__`"
|
||||
with Manager():
|
||||
...
|
||||
```
|
||||
|
||||
## Context manager without an `__enter__` method
|
||||
|
||||
```py
|
||||
class Manager:
|
||||
def __exit__(self, exc_tpe, exc_value, traceback): ...
|
||||
|
||||
# error: [invalid-context-manager] "Object of type `Manager` cannot be used with `with` because it doesn't implement `__enter__`"
|
||||
with Manager():
|
||||
...
|
||||
```
|
||||
|
||||
## Context manager without an `__exit__` method
|
||||
|
||||
```py
|
||||
class Manager:
|
||||
def __enter__(self): ...
|
||||
|
||||
# error: [invalid-context-manager] "Object of type `Manager` cannot be used with `with` because it doesn't implement `__exit__`"
|
||||
with Manager():
|
||||
...
|
||||
```
|
||||
|
||||
## Context manager with non-callable `__enter__` attribute
|
||||
|
||||
```py
|
||||
class Manager:
|
||||
__enter__ = 42
|
||||
|
||||
def __exit__(self, exc_tpe, exc_value, traceback): ...
|
||||
|
||||
# error: [invalid-context-manager] "Object of type `Manager` cannot be used with `with` because the method `__enter__` of type `Literal[42]` is not callable"
|
||||
with Manager():
|
||||
...
|
||||
```
|
||||
|
||||
## Context manager with non-callable `__exit__` attribute
|
||||
|
||||
```py
|
||||
class Manager:
|
||||
def __enter__(self) -> Self: ...
|
||||
|
||||
__exit__ = 32
|
||||
|
||||
# error: [invalid-context-manager] "Object of type `Manager` cannot be used with `with` because the method `__exit__` of type `Literal[32]` is not callable"
|
||||
with Manager():
|
||||
...
|
||||
```
|
||||
|
||||
## Context expression with possibly-unbound union variants
|
||||
|
||||
```py
|
||||
def coinflip() -> bool:
|
||||
return True
|
||||
|
||||
class Manager1:
|
||||
def __enter__(self) -> str:
|
||||
return "foo"
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback): ...
|
||||
|
||||
class NotAContextManager: ...
|
||||
|
||||
context_expr = Manager1() if coinflip() else NotAContextManager()
|
||||
|
||||
# error: [invalid-context-manager] "Object of type `Manager1 | NotAContextManager` cannot be used with `with` because the method `__enter__` is possibly unbound"
|
||||
# error: [invalid-context-manager] "Object of type `Manager1 | NotAContextManager` cannot be used with `with` because the method `__exit__` is possibly unbound"
|
||||
with context_expr as f:
|
||||
reveal_type(f) # revealed: str
|
||||
```
|
||||
|
||||
## Context expression with "sometimes" callable `__enter__` method
|
||||
|
||||
```py
|
||||
def coinflip() -> bool:
|
||||
return True
|
||||
|
||||
class Manager:
|
||||
if coinflip():
|
||||
def __enter__(self) -> str:
|
||||
return "abcd"
|
||||
|
||||
def __exit__(self, *args): ...
|
||||
|
||||
# error: [invalid-context-manager] "Object of type `Manager` cannot be used with `with` because the method `__enter__` is possibly unbound"
|
||||
with Manager() as f:
|
||||
reveal_type(f) # revealed: str
|
||||
```
|
||||
@@ -132,7 +132,7 @@ mod tests {
|
||||
#[test]
|
||||
fn inequality() {
|
||||
let parsed_raw = parse_unchecked_source("1 + 2", PySourceType::Python);
|
||||
let parsed = ParsedModule::new(parsed_raw.clone());
|
||||
let parsed = ParsedModule::new(parsed_raw);
|
||||
|
||||
let stmt = &parsed.syntax().body[0];
|
||||
let node = unsafe { AstNodeRef::new(parsed.clone(), stmt) };
|
||||
@@ -150,7 +150,7 @@ mod tests {
|
||||
#[allow(unsafe_code)]
|
||||
fn debug() {
|
||||
let parsed_raw = parse_unchecked_source("1 + 2", PySourceType::Python);
|
||||
let parsed = ParsedModule::new(parsed_raw.clone());
|
||||
let parsed = ParsedModule::new(parsed_raw);
|
||||
|
||||
let stmt = &parsed.syntax().body[0];
|
||||
|
||||
|
||||
@@ -20,7 +20,9 @@ pub mod semantic_index;
|
||||
mod semantic_model;
|
||||
pub(crate) mod site_packages;
|
||||
mod stdlib;
|
||||
pub(crate) mod symbol;
|
||||
pub mod types;
|
||||
mod unpack;
|
||||
mod util;
|
||||
|
||||
type FxOrderSet<V> = ordermap::set::OrderSet<V, BuildHasherDefault<FxHasher>>;
|
||||
|
||||
@@ -1294,7 +1294,7 @@ mod tests {
|
||||
search_paths: SearchPathSettings {
|
||||
extra_paths: vec![],
|
||||
src_root: src.clone(),
|
||||
custom_typeshed: Some(custom_typeshed.clone()),
|
||||
custom_typeshed: Some(custom_typeshed),
|
||||
site_packages: SitePackages::Known(vec![site_packages]),
|
||||
},
|
||||
},
|
||||
@@ -1445,7 +1445,7 @@ mod tests {
|
||||
assert_function_query_was_not_run(
|
||||
&db,
|
||||
resolve_module_query,
|
||||
ModuleNameIngredient::new(&db, functools_module_name.clone()),
|
||||
ModuleNameIngredient::new(&db, functools_module_name),
|
||||
&events,
|
||||
);
|
||||
assert_eq!(functools_module.search_path(), &stdlib);
|
||||
|
||||
@@ -125,6 +125,7 @@ impl<'db> SemanticIndex<'db> {
|
||||
///
|
||||
/// Use the Salsa cached [`symbol_table()`] query if you only need the
|
||||
/// symbol table for a single scope.
|
||||
#[track_caller]
|
||||
pub(super) fn symbol_table(&self, scope_id: FileScopeId) -> Arc<SymbolTable> {
|
||||
self.symbol_tables[scope_id].clone()
|
||||
}
|
||||
@@ -133,15 +134,18 @@ impl<'db> SemanticIndex<'db> {
|
||||
///
|
||||
/// Use the Salsa cached [`use_def_map()`] query if you only need the
|
||||
/// use-def map for a single scope.
|
||||
#[track_caller]
|
||||
pub(super) fn use_def_map(&self, scope_id: FileScopeId) -> Arc<UseDefMap> {
|
||||
self.use_def_maps[scope_id].clone()
|
||||
}
|
||||
|
||||
#[track_caller]
|
||||
pub(crate) fn ast_ids(&self, scope_id: FileScopeId) -> &AstIds {
|
||||
&self.ast_ids[scope_id]
|
||||
}
|
||||
|
||||
/// Returns the ID of the `expression`'s enclosing scope.
|
||||
#[track_caller]
|
||||
pub(crate) fn expression_scope_id(
|
||||
&self,
|
||||
expression: impl Into<ExpressionNodeKey>,
|
||||
@@ -151,11 +155,13 @@ impl<'db> SemanticIndex<'db> {
|
||||
|
||||
/// Returns the [`Scope`] of the `expression`'s enclosing scope.
|
||||
#[allow(unused)]
|
||||
#[track_caller]
|
||||
pub(crate) fn expression_scope(&self, expression: impl Into<ExpressionNodeKey>) -> &Scope {
|
||||
&self.scopes[self.expression_scope_id(expression)]
|
||||
}
|
||||
|
||||
/// Returns the [`Scope`] with the given id.
|
||||
#[track_caller]
|
||||
pub(crate) fn scope(&self, id: FileScopeId) -> &Scope {
|
||||
&self.scopes[id]
|
||||
}
|
||||
@@ -172,6 +178,7 @@ impl<'db> SemanticIndex<'db> {
|
||||
|
||||
/// Returns the parent scope of `scope_id`.
|
||||
#[allow(unused)]
|
||||
#[track_caller]
|
||||
pub(crate) fn parent_scope(&self, scope_id: FileScopeId) -> Option<&Scope> {
|
||||
Some(&self.scopes[self.parent_scope_id(scope_id)?])
|
||||
}
|
||||
@@ -195,6 +202,7 @@ impl<'db> SemanticIndex<'db> {
|
||||
}
|
||||
|
||||
/// Returns the [`Definition`] salsa ingredient for `definition_key`.
|
||||
#[track_caller]
|
||||
pub(crate) fn definition(
|
||||
&self,
|
||||
definition_key: impl Into<DefinitionNodeKey>,
|
||||
@@ -206,6 +214,7 @@ impl<'db> SemanticIndex<'db> {
|
||||
/// Panics if we have no expression ingredient for that node. We can only call this method for
|
||||
/// standalone-inferable expressions, which we call `add_standalone_expression` for in
|
||||
/// [`SemanticIndexBuilder`].
|
||||
#[track_caller]
|
||||
pub(crate) fn expression(
|
||||
&self,
|
||||
expression_key: impl Into<ExpressionNodeKey>,
|
||||
@@ -213,8 +222,18 @@ impl<'db> SemanticIndex<'db> {
|
||||
self.expressions_by_node[&expression_key.into()]
|
||||
}
|
||||
|
||||
pub(crate) fn try_expression(
|
||||
&self,
|
||||
expression_key: impl Into<ExpressionNodeKey>,
|
||||
) -> Option<Expression<'db>> {
|
||||
self.expressions_by_node
|
||||
.get(&expression_key.into())
|
||||
.copied()
|
||||
}
|
||||
|
||||
/// Returns the id of the scope that `node` creates. This is different from [`Definition::scope`] which
|
||||
/// returns the scope in which that definition is defined in.
|
||||
#[track_caller]
|
||||
pub(crate) fn node_scope(&self, node: NodeWithScopeRef) -> FileScopeId {
|
||||
self.scopes_by_node[&node.node_key()]
|
||||
}
|
||||
|
||||
@@ -87,6 +87,14 @@ pub trait HasScopedAstId {
|
||||
fn scoped_ast_id(&self, db: &dyn Db, scope: ScopeId) -> Self::Id;
|
||||
}
|
||||
|
||||
impl<T: HasScopedAstId> HasScopedAstId for Box<T> {
|
||||
type Id = <T as HasScopedAstId>::Id;
|
||||
|
||||
fn scoped_ast_id(&self, db: &dyn Db, scope: ScopeId) -> Self::Id {
|
||||
self.as_ref().scoped_ast_id(db, scope)
|
||||
}
|
||||
}
|
||||
|
||||
/// Uniquely identifies an [`ast::Expr`] in a [`crate::semantic_index::symbol::FileScopeId`].
|
||||
#[newtype_index]
|
||||
pub struct ScopedExpressionId;
|
||||
|
||||
@@ -9,7 +9,7 @@ use ruff_index::IndexVec;
|
||||
use ruff_python_ast as ast;
|
||||
use ruff_python_ast::name::Name;
|
||||
use ruff_python_ast::visitor::{walk_expr, walk_pattern, walk_stmt, Visitor};
|
||||
use ruff_python_ast::AnyParameterRef;
|
||||
use ruff_python_ast::{AnyParameterRef, BoolOp, Expr};
|
||||
|
||||
use crate::ast_node_ref::AstNodeRef;
|
||||
use crate::semantic_index::ast_ids::node_key::ExpressionNodeKey;
|
||||
@@ -25,12 +25,13 @@ use crate::semantic_index::symbol::{
|
||||
};
|
||||
use crate::semantic_index::use_def::{FlowSnapshot, UseDefMapBuilder};
|
||||
use crate::semantic_index::SemanticIndex;
|
||||
use crate::unpack::Unpack;
|
||||
use crate::Db;
|
||||
|
||||
use super::constraint::{Constraint, PatternConstraint};
|
||||
use super::constraint::{Constraint, ConstraintNode, PatternConstraint};
|
||||
use super::definition::{
|
||||
AssignmentKind, DefinitionCategory, ExceptHandlerDefinitionNodeRef,
|
||||
MatchPatternDefinitionNodeRef, WithItemDefinitionNodeRef,
|
||||
DefinitionCategory, ExceptHandlerDefinitionNodeRef, MatchPatternDefinitionNodeRef,
|
||||
WithItemDefinitionNodeRef,
|
||||
};
|
||||
|
||||
mod except_handlers;
|
||||
@@ -46,6 +47,7 @@ pub(super) struct SemanticIndexBuilder<'db> {
|
||||
current_assignments: Vec<CurrentAssignment<'db>>,
|
||||
/// The match case we're currently visiting.
|
||||
current_match_case: Option<CurrentMatchCase<'db>>,
|
||||
|
||||
/// Flow states at each `break` in the current loop.
|
||||
loop_break_states: Vec<FlowSnapshot>,
|
||||
/// Per-scope contexts regarding nested `try`/`except` statements
|
||||
@@ -112,9 +114,11 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
fn push_scope_with_parent(&mut self, node: NodeWithScopeRef, parent: Option<FileScopeId>) {
|
||||
let children_start = self.scopes.next_index() + 1;
|
||||
|
||||
#[allow(unsafe_code)]
|
||||
let scope = Scope {
|
||||
parent,
|
||||
kind: node.scope_kind(),
|
||||
// SAFETY: `node` is guaranteed to be a child of `self.module`
|
||||
node: unsafe { node.to_kind(self.module.clone()) },
|
||||
descendents: children_start..children_start,
|
||||
};
|
||||
self.try_node_context_stack_manager.enter_nested_scope();
|
||||
@@ -124,15 +128,7 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
self.use_def_maps.push(UseDefMapBuilder::new());
|
||||
let ast_id_scope = self.ast_ids.push(AstIdsBuilder::new());
|
||||
|
||||
#[allow(unsafe_code)]
|
||||
// SAFETY: `node` is guaranteed to be a child of `self.module`
|
||||
let scope_id = ScopeId::new(
|
||||
self.db,
|
||||
self.file,
|
||||
file_scope_id,
|
||||
unsafe { node.to_kind(self.module.clone()) },
|
||||
countme::Count::default(),
|
||||
);
|
||||
let scope_id = ScopeId::new(self.db, self.file, file_scope_id, countme::Count::default());
|
||||
|
||||
self.scope_ids_by_scope.push(scope_id);
|
||||
self.scopes_by_node.insert(node.node_key(), file_scope_id);
|
||||
@@ -195,14 +191,18 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
self.current_symbol_table().mark_symbol_bound(id);
|
||||
}
|
||||
|
||||
fn mark_symbol_declared(&mut self, id: ScopedSymbolId) {
|
||||
self.current_symbol_table().mark_symbol_declared(id);
|
||||
}
|
||||
|
||||
fn mark_symbol_used(&mut self, id: ScopedSymbolId) {
|
||||
self.current_symbol_table().mark_symbol_used(id);
|
||||
}
|
||||
|
||||
fn add_definition<'a>(
|
||||
fn add_definition(
|
||||
&mut self,
|
||||
symbol: ScopedSymbolId,
|
||||
definition_node: impl Into<DefinitionNodeRef<'a>>,
|
||||
definition_node: impl Into<DefinitionNodeRef<'db>>,
|
||||
) -> Definition<'db> {
|
||||
let definition_node: DefinitionNodeRef<'_> = definition_node.into();
|
||||
#[allow(unsafe_code)]
|
||||
@@ -226,6 +226,9 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
if category.is_binding() {
|
||||
self.mark_symbol_bound(symbol);
|
||||
}
|
||||
if category.is_declaration() {
|
||||
self.mark_symbol_declared(symbol);
|
||||
}
|
||||
|
||||
let use_def = self.current_use_def_map_mut();
|
||||
match category {
|
||||
@@ -243,12 +246,30 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
definition
|
||||
}
|
||||
|
||||
fn add_expression_constraint(&mut self, constraint_node: &ast::Expr) -> Expression<'db> {
|
||||
let expression = self.add_standalone_expression(constraint_node);
|
||||
self.current_use_def_map_mut()
|
||||
.record_constraint(Constraint::Expression(expression));
|
||||
fn record_expression_constraint(&mut self, constraint_node: &ast::Expr) -> Constraint<'db> {
|
||||
let constraint = self.build_constraint(constraint_node);
|
||||
self.record_constraint(constraint);
|
||||
constraint
|
||||
}
|
||||
|
||||
expression
|
||||
fn record_constraint(&mut self, constraint: Constraint<'db>) {
|
||||
self.current_use_def_map_mut().record_constraint(constraint);
|
||||
}
|
||||
|
||||
fn build_constraint(&mut self, constraint_node: &Expr) -> Constraint<'db> {
|
||||
let expression = self.add_standalone_expression(constraint_node);
|
||||
Constraint {
|
||||
node: ConstraintNode::Expression(expression),
|
||||
is_positive: true,
|
||||
}
|
||||
}
|
||||
|
||||
fn record_negated_constraint(&mut self, constraint: Constraint<'db>) {
|
||||
self.current_use_def_map_mut()
|
||||
.record_constraint(Constraint {
|
||||
node: constraint.node,
|
||||
is_positive: false,
|
||||
});
|
||||
}
|
||||
|
||||
fn push_assignment(&mut self, assignment: CurrentAssignment<'db>) {
|
||||
@@ -260,8 +281,12 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
debug_assert!(popped_assignment.is_some());
|
||||
}
|
||||
|
||||
fn current_assignment(&self) -> Option<&CurrentAssignment<'db>> {
|
||||
self.current_assignments.last()
|
||||
fn current_assignment(&self) -> Option<CurrentAssignment<'db>> {
|
||||
self.current_assignments.last().copied()
|
||||
}
|
||||
|
||||
fn current_assignment_mut(&mut self) -> Option<&mut CurrentAssignment<'db>> {
|
||||
self.current_assignments.last_mut()
|
||||
}
|
||||
|
||||
fn add_pattern_constraint(
|
||||
@@ -285,7 +310,10 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
countme::Count::default(),
|
||||
);
|
||||
self.current_use_def_map_mut()
|
||||
.record_constraint(Constraint::Pattern(pattern_constraint));
|
||||
.record_constraint(Constraint {
|
||||
node: ConstraintNode::Pattern(pattern_constraint),
|
||||
is_positive: true,
|
||||
});
|
||||
pattern_constraint
|
||||
}
|
||||
|
||||
@@ -338,6 +366,7 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
// note that the "bound" on the typevar is a totally different thing than whether
|
||||
// or not a name is "bound" by a typevar declaration; the latter is always true.
|
||||
self.mark_symbol_bound(symbol);
|
||||
self.mark_symbol_declared(symbol);
|
||||
if let Some(bounds) = bound {
|
||||
self.visit_expr(bounds);
|
||||
}
|
||||
@@ -416,7 +445,7 @@ impl<'db> SemanticIndexBuilder<'db> {
|
||||
self.pop_scope();
|
||||
}
|
||||
|
||||
fn declare_parameter(&mut self, parameter: AnyParameterRef) {
|
||||
fn declare_parameter(&mut self, parameter: AnyParameterRef<'db>) {
|
||||
let symbol = self.add_symbol(parameter.name().id().clone());
|
||||
|
||||
let definition = self.add_definition(symbol, parameter);
|
||||
@@ -590,24 +619,48 @@ where
|
||||
}
|
||||
ast::Stmt::Assign(node) => {
|
||||
debug_assert_eq!(&self.current_assignments, &[]);
|
||||
|
||||
self.visit_expr(&node.value);
|
||||
self.add_standalone_expression(&node.value);
|
||||
for (target_index, target) in node.targets.iter().enumerate() {
|
||||
let kind = match target {
|
||||
ast::Expr::List(_) | ast::Expr::Tuple(_) => Some(AssignmentKind::Sequence),
|
||||
ast::Expr::Name(_) => Some(AssignmentKind::Name),
|
||||
let value = self.add_standalone_expression(&node.value);
|
||||
|
||||
for target in &node.targets {
|
||||
// We only handle assignments to names and unpackings here, other targets like
|
||||
// attribute and subscript are handled separately as they don't create a new
|
||||
// definition.
|
||||
let current_assignment = match target {
|
||||
ast::Expr::List(_) | ast::Expr::Tuple(_) => {
|
||||
Some(CurrentAssignment::Assign {
|
||||
node,
|
||||
first: true,
|
||||
unpack: Some(Unpack::new(
|
||||
self.db,
|
||||
self.file,
|
||||
self.current_scope(),
|
||||
#[allow(unsafe_code)]
|
||||
unsafe {
|
||||
AstNodeRef::new(self.module.clone(), target)
|
||||
},
|
||||
value,
|
||||
countme::Count::default(),
|
||||
)),
|
||||
})
|
||||
}
|
||||
ast::Expr::Name(_) => Some(CurrentAssignment::Assign {
|
||||
node,
|
||||
unpack: None,
|
||||
first: false,
|
||||
}),
|
||||
_ => None,
|
||||
};
|
||||
if let Some(kind) = kind {
|
||||
self.push_assignment(CurrentAssignment::Assign {
|
||||
assignment: node,
|
||||
target_index,
|
||||
kind,
|
||||
});
|
||||
|
||||
if let Some(current_assignment) = current_assignment {
|
||||
self.push_assignment(current_assignment);
|
||||
}
|
||||
|
||||
self.visit_expr(target);
|
||||
if kind.is_some() {
|
||||
// only need to pop in the case where we pushed something
|
||||
|
||||
if current_assignment.is_some() {
|
||||
// Only need to pop in the case where we pushed something
|
||||
self.pop_assignment();
|
||||
}
|
||||
}
|
||||
@@ -639,7 +692,8 @@ where
|
||||
ast::Stmt::If(node) => {
|
||||
self.visit_expr(&node.test);
|
||||
let pre_if = self.flow_snapshot();
|
||||
self.add_expression_constraint(&node.test);
|
||||
let constraint = self.record_expression_constraint(&node.test);
|
||||
let mut constraints = vec![constraint];
|
||||
self.visit_body(&node.body);
|
||||
let mut post_clauses: Vec<FlowSnapshot> = vec![];
|
||||
for clause in &node.elif_else_clauses {
|
||||
@@ -649,7 +703,14 @@ where
|
||||
// we can only take an elif/else branch if none of the previous ones were
|
||||
// taken, so the block entry state is always `pre_if`
|
||||
self.flow_restore(pre_if.clone());
|
||||
self.visit_elif_else_clause(clause);
|
||||
for constraint in &constraints {
|
||||
self.record_negated_constraint(*constraint);
|
||||
}
|
||||
if let Some(elif_test) = &clause.test {
|
||||
self.visit_expr(elif_test);
|
||||
constraints.push(self.record_expression_constraint(elif_test));
|
||||
}
|
||||
self.visit_body(&clause.body);
|
||||
}
|
||||
for post_clause_state in post_clauses {
|
||||
self.flow_merge(post_clause_state);
|
||||
@@ -697,12 +758,20 @@ where
|
||||
self.flow_merge(break_state);
|
||||
}
|
||||
}
|
||||
ast::Stmt::With(ast::StmtWith { items, body, .. }) => {
|
||||
ast::Stmt::With(ast::StmtWith {
|
||||
items,
|
||||
body,
|
||||
is_async,
|
||||
..
|
||||
}) => {
|
||||
for item in items {
|
||||
self.visit_expr(&item.context_expr);
|
||||
if let Some(optional_vars) = item.optional_vars.as_deref() {
|
||||
self.add_standalone_expression(&item.context_expr);
|
||||
self.push_assignment(item.into());
|
||||
self.push_assignment(CurrentAssignment::WithItem {
|
||||
item,
|
||||
is_async: *is_async,
|
||||
});
|
||||
self.visit_expr(optional_vars);
|
||||
self.pop_assignment();
|
||||
}
|
||||
@@ -918,20 +987,26 @@ where
|
||||
};
|
||||
let symbol = self.add_symbol(id.clone());
|
||||
|
||||
if is_use {
|
||||
self.mark_symbol_used(symbol);
|
||||
let use_id = self.current_ast_ids().record_use(expr);
|
||||
self.current_use_def_map_mut().record_use(symbol, use_id);
|
||||
}
|
||||
|
||||
if is_definition {
|
||||
match self.current_assignment().copied() {
|
||||
match self.current_assignment() {
|
||||
Some(CurrentAssignment::Assign {
|
||||
assignment,
|
||||
target_index,
|
||||
kind,
|
||||
node,
|
||||
first,
|
||||
unpack,
|
||||
}) => {
|
||||
self.add_definition(
|
||||
symbol,
|
||||
AssignmentDefinitionNodeRef {
|
||||
assignment,
|
||||
target_index,
|
||||
unpack,
|
||||
value: &node.value,
|
||||
name: name_node,
|
||||
kind,
|
||||
first,
|
||||
},
|
||||
);
|
||||
}
|
||||
@@ -968,12 +1043,13 @@ where
|
||||
},
|
||||
);
|
||||
}
|
||||
Some(CurrentAssignment::WithItem(with_item)) => {
|
||||
Some(CurrentAssignment::WithItem { item, is_async }) => {
|
||||
self.add_definition(
|
||||
symbol,
|
||||
WithItemDefinitionNodeRef {
|
||||
node: with_item,
|
||||
node: item,
|
||||
target: name_node,
|
||||
is_async,
|
||||
},
|
||||
);
|
||||
}
|
||||
@@ -981,10 +1057,9 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
if is_use {
|
||||
self.mark_symbol_used(symbol);
|
||||
let use_id = self.current_ast_ids().record_use(expr);
|
||||
self.current_use_def_map_mut().record_use(symbol, use_id);
|
||||
if let Some(CurrentAssignment::Assign { first, .. }) = self.current_assignment_mut()
|
||||
{
|
||||
*first = false;
|
||||
}
|
||||
|
||||
walk_expr(self, expr);
|
||||
@@ -1027,10 +1102,13 @@ where
|
||||
// AST inspection, so we can't simplify here, need to record test expression for
|
||||
// later checking)
|
||||
self.visit_expr(test);
|
||||
let constraint = self.record_expression_constraint(test);
|
||||
let pre_if = self.flow_snapshot();
|
||||
self.visit_expr(body);
|
||||
let post_body = self.flow_snapshot();
|
||||
self.flow_restore(pre_if);
|
||||
|
||||
self.record_negated_constraint(constraint);
|
||||
self.visit_expr(orelse);
|
||||
self.flow_merge(post_body);
|
||||
}
|
||||
@@ -1084,6 +1162,33 @@ where
|
||||
},
|
||||
);
|
||||
}
|
||||
ast::Expr::BoolOp(ast::ExprBoolOp {
|
||||
values,
|
||||
range: _,
|
||||
op,
|
||||
}) => {
|
||||
// TODO detect statically known truthy or falsy values (via type inference, not naive
|
||||
// AST inspection, so we can't simplify here, need to record test expression for
|
||||
// later checking)
|
||||
let mut snapshots = vec![];
|
||||
|
||||
for (index, value) in values.iter().enumerate() {
|
||||
self.visit_expr(value);
|
||||
// In the last value we don't need to take a snapshot nor add a constraint
|
||||
if index < values.len() - 1 {
|
||||
// Snapshot is taken after visiting the expression but before adding the constraint.
|
||||
snapshots.push(self.flow_snapshot());
|
||||
let constraint = self.build_constraint(value);
|
||||
match op {
|
||||
BoolOp::And => self.record_constraint(constraint),
|
||||
BoolOp::Or => self.record_negated_constraint(constraint),
|
||||
}
|
||||
}
|
||||
}
|
||||
for snapshot in snapshots {
|
||||
self.flow_merge(snapshot);
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
walk_expr(self, expr);
|
||||
}
|
||||
@@ -1156,9 +1261,9 @@ where
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
enum CurrentAssignment<'a> {
|
||||
Assign {
|
||||
assignment: &'a ast::StmtAssign,
|
||||
target_index: usize,
|
||||
kind: AssignmentKind,
|
||||
node: &'a ast::StmtAssign,
|
||||
first: bool,
|
||||
unpack: Option<Unpack<'a>>,
|
||||
},
|
||||
AnnAssign(&'a ast::StmtAnnAssign),
|
||||
AugAssign(&'a ast::StmtAugAssign),
|
||||
@@ -1168,7 +1273,10 @@ enum CurrentAssignment<'a> {
|
||||
node: &'a ast::Comprehension,
|
||||
first: bool,
|
||||
},
|
||||
WithItem(&'a ast::WithItem),
|
||||
WithItem {
|
||||
item: &'a ast::WithItem,
|
||||
is_async: bool,
|
||||
},
|
||||
}
|
||||
|
||||
impl<'a> From<&'a ast::StmtAnnAssign> for CurrentAssignment<'a> {
|
||||
@@ -1195,12 +1303,6 @@ impl<'a> From<&'a ast::ExprNamed> for CurrentAssignment<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> From<&'a ast::WithItem> for CurrentAssignment<'a> {
|
||||
fn from(value: &'a ast::WithItem) -> Self {
|
||||
Self::WithItem(value)
|
||||
}
|
||||
}
|
||||
|
||||
struct CurrentMatchCase<'a> {
|
||||
/// The pattern that's part of the current match case.
|
||||
pattern: &'a ast::Pattern,
|
||||
|
||||
@@ -7,7 +7,13 @@ use crate::semantic_index::expression::Expression;
|
||||
use crate::semantic_index::symbol::{FileScopeId, ScopeId};
|
||||
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub(crate) enum Constraint<'db> {
|
||||
pub(crate) struct Constraint<'db> {
|
||||
pub(crate) node: ConstraintNode<'db>,
|
||||
pub(crate) is_positive: bool,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub(crate) enum ConstraintNode<'db> {
|
||||
Expression(Expression<'db>),
|
||||
Pattern(PatternConstraint<'db>),
|
||||
}
|
||||
|
||||
@@ -6,8 +6,22 @@ use crate::ast_node_ref::AstNodeRef;
|
||||
use crate::module_resolver::file_to_module;
|
||||
use crate::node_key::NodeKey;
|
||||
use crate::semantic_index::symbol::{FileScopeId, ScopeId, ScopedSymbolId};
|
||||
use crate::unpack::Unpack;
|
||||
use crate::Db;
|
||||
|
||||
/// A definition of a symbol.
|
||||
///
|
||||
/// ## Module-local type
|
||||
/// This type should not be used as part of any cross-module API because
|
||||
/// it holds a reference to the AST node. Range-offset changes
|
||||
/// then propagate through all usages, and deserialization requires
|
||||
/// reparsing the entire module.
|
||||
///
|
||||
/// E.g. don't use this type in:
|
||||
///
|
||||
/// * a return type of a cross-module query
|
||||
/// * a field of a type that is a return type of a cross-module query
|
||||
/// * an argument of a cross-module query
|
||||
#[salsa::tracked]
|
||||
pub struct Definition<'db> {
|
||||
/// The file in which the definition occurs.
|
||||
@@ -24,7 +38,7 @@ pub struct Definition<'db> {
|
||||
|
||||
#[no_eq]
|
||||
#[return_ref]
|
||||
pub(crate) kind: DefinitionKind,
|
||||
pub(crate) kind: DefinitionKind<'db>,
|
||||
|
||||
#[no_eq]
|
||||
count: countme::Count<Definition<'static>>,
|
||||
@@ -166,16 +180,17 @@ pub(crate) struct ImportFromDefinitionNodeRef<'a> {
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub(crate) struct AssignmentDefinitionNodeRef<'a> {
|
||||
pub(crate) assignment: &'a ast::StmtAssign,
|
||||
pub(crate) target_index: usize,
|
||||
pub(crate) unpack: Option<Unpack<'a>>,
|
||||
pub(crate) value: &'a ast::Expr,
|
||||
pub(crate) name: &'a ast::ExprName,
|
||||
pub(crate) kind: AssignmentKind,
|
||||
pub(crate) first: bool,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub(crate) struct WithItemDefinitionNodeRef<'a> {
|
||||
pub(crate) node: &'a ast::WithItem,
|
||||
pub(crate) target: &'a ast::ExprName,
|
||||
pub(crate) is_async: bool,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
@@ -210,9 +225,9 @@ pub(crate) struct MatchPatternDefinitionNodeRef<'a> {
|
||||
pub(crate) index: u32,
|
||||
}
|
||||
|
||||
impl DefinitionNodeRef<'_> {
|
||||
impl<'db> DefinitionNodeRef<'db> {
|
||||
#[allow(unsafe_code)]
|
||||
pub(super) unsafe fn into_owned(self, parsed: ParsedModule) -> DefinitionKind {
|
||||
pub(super) unsafe fn into_owned(self, parsed: ParsedModule) -> DefinitionKind<'db> {
|
||||
match self {
|
||||
DefinitionNodeRef::Import(alias) => {
|
||||
DefinitionKind::Import(AstNodeRef::new(parsed, alias))
|
||||
@@ -233,15 +248,15 @@ impl DefinitionNodeRef<'_> {
|
||||
DefinitionKind::NamedExpression(AstNodeRef::new(parsed, named))
|
||||
}
|
||||
DefinitionNodeRef::Assignment(AssignmentDefinitionNodeRef {
|
||||
assignment,
|
||||
target_index,
|
||||
unpack,
|
||||
value,
|
||||
name,
|
||||
kind,
|
||||
first,
|
||||
}) => DefinitionKind::Assignment(AssignmentDefinitionKind {
|
||||
assignment: AstNodeRef::new(parsed.clone(), assignment),
|
||||
target_index,
|
||||
target: TargetKind::from(unpack),
|
||||
value: AstNodeRef::new(parsed.clone(), value),
|
||||
name: AstNodeRef::new(parsed, name),
|
||||
kind,
|
||||
first,
|
||||
}),
|
||||
DefinitionNodeRef::AnnotatedAssignment(assign) => {
|
||||
DefinitionKind::AnnotatedAssignment(AstNodeRef::new(parsed, assign))
|
||||
@@ -277,12 +292,15 @@ impl DefinitionNodeRef<'_> {
|
||||
DefinitionKind::ParameterWithDefault(AstNodeRef::new(parsed, parameter))
|
||||
}
|
||||
},
|
||||
DefinitionNodeRef::WithItem(WithItemDefinitionNodeRef { node, target }) => {
|
||||
DefinitionKind::WithItem(WithItemDefinitionKind {
|
||||
node: AstNodeRef::new(parsed.clone(), node),
|
||||
target: AstNodeRef::new(parsed, target),
|
||||
})
|
||||
}
|
||||
DefinitionNodeRef::WithItem(WithItemDefinitionNodeRef {
|
||||
node,
|
||||
target,
|
||||
is_async,
|
||||
}) => DefinitionKind::WithItem(WithItemDefinitionKind {
|
||||
node: AstNodeRef::new(parsed.clone(), node),
|
||||
target: AstNodeRef::new(parsed, target),
|
||||
is_async,
|
||||
}),
|
||||
DefinitionNodeRef::MatchPattern(MatchPatternDefinitionNodeRef {
|
||||
pattern,
|
||||
identifier,
|
||||
@@ -296,7 +314,7 @@ impl DefinitionNodeRef<'_> {
|
||||
handler,
|
||||
is_star,
|
||||
}) => DefinitionKind::ExceptHandler(ExceptHandlerDefinitionKind {
|
||||
handler: AstNodeRef::new(parsed.clone(), handler),
|
||||
handler: AstNodeRef::new(parsed, handler),
|
||||
is_star,
|
||||
}),
|
||||
}
|
||||
@@ -312,10 +330,10 @@ impl DefinitionNodeRef<'_> {
|
||||
Self::Class(node) => node.into(),
|
||||
Self::NamedExpression(node) => node.into(),
|
||||
Self::Assignment(AssignmentDefinitionNodeRef {
|
||||
assignment: _,
|
||||
target_index: _,
|
||||
value: _,
|
||||
unpack: _,
|
||||
name,
|
||||
kind: _,
|
||||
first: _,
|
||||
}) => name.into(),
|
||||
Self::AnnotatedAssignment(node) => node.into(),
|
||||
Self::AugmentedAssignment(node) => node.into(),
|
||||
@@ -329,7 +347,11 @@ impl DefinitionNodeRef<'_> {
|
||||
ast::AnyParameterRef::Variadic(parameter) => parameter.into(),
|
||||
ast::AnyParameterRef::NonVariadic(parameter) => parameter.into(),
|
||||
},
|
||||
Self::WithItem(WithItemDefinitionNodeRef { node: _, target }) => target.into(),
|
||||
Self::WithItem(WithItemDefinitionNodeRef {
|
||||
node: _,
|
||||
target,
|
||||
is_async: _,
|
||||
}) => target.into(),
|
||||
Self::MatchPattern(MatchPatternDefinitionNodeRef { identifier, .. }) => {
|
||||
identifier.into()
|
||||
}
|
||||
@@ -374,13 +396,13 @@ impl DefinitionCategory {
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum DefinitionKind {
|
||||
pub enum DefinitionKind<'db> {
|
||||
Import(AstNodeRef<ast::Alias>),
|
||||
ImportFrom(ImportFromDefinitionKind),
|
||||
Function(AstNodeRef<ast::StmtFunctionDef>),
|
||||
Class(AstNodeRef<ast::StmtClassDef>),
|
||||
NamedExpression(AstNodeRef<ast::ExprNamed>),
|
||||
Assignment(AssignmentDefinitionKind),
|
||||
Assignment(AssignmentDefinitionKind<'db>),
|
||||
AnnotatedAssignment(AstNodeRef<ast::StmtAnnAssign>),
|
||||
AugmentedAssignment(AstNodeRef<ast::StmtAugAssign>),
|
||||
For(ForStmtDefinitionKind),
|
||||
@@ -392,7 +414,7 @@ pub enum DefinitionKind {
|
||||
ExceptHandler(ExceptHandlerDefinitionKind),
|
||||
}
|
||||
|
||||
impl DefinitionKind {
|
||||
impl DefinitionKind<'_> {
|
||||
pub(crate) fn category(&self) -> DefinitionCategory {
|
||||
match self {
|
||||
// functions, classes, and imports always bind, and we consider them declarations
|
||||
@@ -437,6 +459,21 @@ impl DefinitionKind {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
pub(crate) enum TargetKind<'db> {
|
||||
Sequence(Unpack<'db>),
|
||||
Name,
|
||||
}
|
||||
|
||||
impl<'db> From<Option<Unpack<'db>>> for TargetKind<'db> {
|
||||
fn from(value: Option<Unpack<'db>>) -> Self {
|
||||
match value {
|
||||
Some(unpack) => TargetKind::Sequence(unpack),
|
||||
None => TargetKind::Name,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
#[allow(dead_code)]
|
||||
pub struct MatchPatternDefinitionKind {
|
||||
@@ -498,42 +535,36 @@ impl ImportFromDefinitionKind {
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct AssignmentDefinitionKind {
|
||||
assignment: AstNodeRef<ast::StmtAssign>,
|
||||
target_index: usize,
|
||||
pub struct AssignmentDefinitionKind<'db> {
|
||||
target: TargetKind<'db>,
|
||||
value: AstNodeRef<ast::Expr>,
|
||||
name: AstNodeRef<ast::ExprName>,
|
||||
kind: AssignmentKind,
|
||||
first: bool,
|
||||
}
|
||||
|
||||
impl AssignmentDefinitionKind {
|
||||
pub(crate) fn value(&self) -> &ast::Expr {
|
||||
&self.assignment.node().value
|
||||
impl<'db> AssignmentDefinitionKind<'db> {
|
||||
pub(crate) fn target(&self) -> TargetKind<'db> {
|
||||
self.target
|
||||
}
|
||||
|
||||
pub(crate) fn target(&self) -> &ast::Expr {
|
||||
&self.assignment.node().targets[self.target_index]
|
||||
pub(crate) fn value(&self) -> &ast::Expr {
|
||||
self.value.node()
|
||||
}
|
||||
|
||||
pub(crate) fn name(&self) -> &ast::ExprName {
|
||||
self.name.node()
|
||||
}
|
||||
|
||||
pub(crate) fn kind(&self) -> AssignmentKind {
|
||||
self.kind
|
||||
pub(crate) fn is_first(&self) -> bool {
|
||||
self.first
|
||||
}
|
||||
}
|
||||
|
||||
/// The kind of assignment target expression.
|
||||
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||
pub enum AssignmentKind {
|
||||
Sequence,
|
||||
Name,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct WithItemDefinitionKind {
|
||||
node: AstNodeRef<ast::WithItem>,
|
||||
target: AstNodeRef<ast::ExprName>,
|
||||
is_async: bool,
|
||||
}
|
||||
|
||||
impl WithItemDefinitionKind {
|
||||
@@ -544,6 +575,10 @@ impl WithItemDefinitionKind {
|
||||
pub(crate) fn target(&self) -> &ast::ExprName {
|
||||
self.target.node()
|
||||
}
|
||||
|
||||
pub(crate) const fn is_async(&self) -> bool {
|
||||
self.is_async
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
|
||||
@@ -8,6 +8,18 @@ use salsa;
|
||||
/// An independently type-inferable expression.
|
||||
///
|
||||
/// Includes constraint expressions (e.g. if tests) and the RHS of an unpacking assignment.
|
||||
///
|
||||
/// ## Module-local type
|
||||
/// This type should not be used as part of any cross-module API because
|
||||
/// it holds a reference to the AST node. Range-offset changes
|
||||
/// then propagate through all usages, and deserialization requires
|
||||
/// reparsing the entire module.
|
||||
///
|
||||
/// E.g. don't use this type in:
|
||||
///
|
||||
/// * a return type of a cross-module query
|
||||
/// * a field of a type that is a return type of a cross-module query
|
||||
/// * an argument of a cross-module query
|
||||
#[salsa::tracked]
|
||||
pub(crate) struct Expression<'db> {
|
||||
/// The file in which the expression occurs.
|
||||
|
||||
@@ -47,17 +47,27 @@ impl Symbol {
|
||||
pub fn is_bound(&self) -> bool {
|
||||
self.flags.contains(SymbolFlags::IS_BOUND)
|
||||
}
|
||||
|
||||
/// Is the symbol declared in its containing scope?
|
||||
pub fn is_declared(&self) -> bool {
|
||||
self.flags.contains(SymbolFlags::IS_DECLARED)
|
||||
}
|
||||
}
|
||||
|
||||
bitflags! {
|
||||
/// Flags that can be queried to obtain information about a symbol in a given scope.
|
||||
///
|
||||
/// See the doc-comment at the top of [`super::use_def`] for explanations of what it
|
||||
/// means for a symbol to be *bound* as opposed to *declared*.
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
struct SymbolFlags: u8 {
|
||||
const IS_USED = 1 << 0;
|
||||
const IS_BOUND = 1 << 1;
|
||||
const IS_BOUND = 1 << 1;
|
||||
const IS_DECLARED = 1 << 2;
|
||||
/// TODO: This flag is not yet set by anything
|
||||
const MARKED_GLOBAL = 1 << 2;
|
||||
const MARKED_GLOBAL = 1 << 3;
|
||||
/// TODO: This flag is not yet set by anything
|
||||
const MARKED_NONLOCAL = 1 << 3;
|
||||
const MARKED_NONLOCAL = 1 << 4;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -93,14 +103,10 @@ pub struct ScopedSymbolId;
|
||||
pub struct ScopeId<'db> {
|
||||
#[id]
|
||||
pub file: File,
|
||||
|
||||
#[id]
|
||||
pub file_scope_id: FileScopeId,
|
||||
|
||||
/// The node that introduces this scope.
|
||||
#[no_eq]
|
||||
#[return_ref]
|
||||
pub node: NodeWithScopeKind,
|
||||
|
||||
#[no_eq]
|
||||
count: countme::Count<ScopeId<'static>>,
|
||||
}
|
||||
@@ -121,6 +127,14 @@ impl<'db> ScopeId<'db> {
|
||||
)
|
||||
}
|
||||
|
||||
pub(crate) fn node(self, db: &dyn Db) -> &NodeWithScopeKind {
|
||||
self.scope(db).node()
|
||||
}
|
||||
|
||||
pub(crate) fn scope(self, db: &dyn Db) -> &Scope {
|
||||
semantic_index(db, self.file(db)).scope(self.file_scope_id(db))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub(crate) fn name(self, db: &'db dyn Db) -> &'db str {
|
||||
match self.node(db) {
|
||||
@@ -159,10 +173,10 @@ impl FileScopeId {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
#[derive(Debug)]
|
||||
pub struct Scope {
|
||||
pub(super) parent: Option<FileScopeId>,
|
||||
pub(super) kind: ScopeKind,
|
||||
pub(super) node: NodeWithScopeKind,
|
||||
pub(super) descendents: Range<FileScopeId>,
|
||||
}
|
||||
|
||||
@@ -171,8 +185,12 @@ impl Scope {
|
||||
self.parent
|
||||
}
|
||||
|
||||
pub fn node(&self) -> &NodeWithScopeKind {
|
||||
&self.node
|
||||
}
|
||||
|
||||
pub fn kind(&self) -> ScopeKind {
|
||||
self.kind
|
||||
self.node().scope_kind()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -298,6 +316,10 @@ impl SymbolTableBuilder {
|
||||
self.table.symbols[id].insert_flags(SymbolFlags::IS_BOUND);
|
||||
}
|
||||
|
||||
pub(super) fn mark_symbol_declared(&mut self, id: ScopedSymbolId) {
|
||||
self.table.symbols[id].insert_flags(SymbolFlags::IS_DECLARED);
|
||||
}
|
||||
|
||||
pub(super) fn mark_symbol_used(&mut self, id: ScopedSymbolId) {
|
||||
self.table.symbols[id].insert_flags(SymbolFlags::IS_USED);
|
||||
}
|
||||
@@ -362,21 +384,6 @@ impl NodeWithScopeRef<'_> {
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn scope_kind(self) -> ScopeKind {
|
||||
match self {
|
||||
NodeWithScopeRef::Module => ScopeKind::Module,
|
||||
NodeWithScopeRef::Class(_) => ScopeKind::Class,
|
||||
NodeWithScopeRef::Function(_) => ScopeKind::Function,
|
||||
NodeWithScopeRef::Lambda(_) => ScopeKind::Function,
|
||||
NodeWithScopeRef::FunctionTypeParameters(_)
|
||||
| NodeWithScopeRef::ClassTypeParameters(_) => ScopeKind::Annotation,
|
||||
NodeWithScopeRef::ListComprehension(_)
|
||||
| NodeWithScopeRef::SetComprehension(_)
|
||||
| NodeWithScopeRef::DictComprehension(_)
|
||||
| NodeWithScopeRef::GeneratorExpression(_) => ScopeKind::Comprehension,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn node_key(self) -> NodeWithScopeKey {
|
||||
match self {
|
||||
NodeWithScopeRef::Module => NodeWithScopeKey::Module,
|
||||
@@ -424,6 +431,36 @@ pub enum NodeWithScopeKind {
|
||||
GeneratorExpression(AstNodeRef<ast::ExprGenerator>),
|
||||
}
|
||||
|
||||
impl NodeWithScopeKind {
|
||||
pub(super) const fn scope_kind(&self) -> ScopeKind {
|
||||
match self {
|
||||
Self::Module => ScopeKind::Module,
|
||||
Self::Class(_) => ScopeKind::Class,
|
||||
Self::Function(_) => ScopeKind::Function,
|
||||
Self::Lambda(_) => ScopeKind::Function,
|
||||
Self::FunctionTypeParameters(_) | Self::ClassTypeParameters(_) => ScopeKind::Annotation,
|
||||
Self::ListComprehension(_)
|
||||
| Self::SetComprehension(_)
|
||||
| Self::DictComprehension(_)
|
||||
| Self::GeneratorExpression(_) => ScopeKind::Comprehension,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn expect_class(&self) -> &ast::StmtClassDef {
|
||||
match self {
|
||||
Self::Class(class) => class.node(),
|
||||
_ => panic!("expected class"),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn expect_function(&self) -> &ast::StmtFunctionDef {
|
||||
match self {
|
||||
Self::Function(function) => function.node(),
|
||||
_ => panic!("expected function"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
|
||||
pub(crate) enum NodeWithScopeKey {
|
||||
Module,
|
||||
|
||||
@@ -228,6 +228,7 @@ use self::symbol_state::{
|
||||
use crate::semantic_index::ast_ids::ScopedUseId;
|
||||
use crate::semantic_index::definition::Definition;
|
||||
use crate::semantic_index::symbol::ScopedSymbolId;
|
||||
use crate::symbol::Boundness;
|
||||
use ruff_index::IndexVec;
|
||||
use rustc_hash::FxHashMap;
|
||||
|
||||
@@ -274,8 +275,12 @@ impl<'db> UseDefMap<'db> {
|
||||
self.bindings_iterator(&self.bindings_by_use[use_id])
|
||||
}
|
||||
|
||||
pub(crate) fn use_may_be_unbound(&self, use_id: ScopedUseId) -> bool {
|
||||
self.bindings_by_use[use_id].may_be_unbound()
|
||||
pub(crate) fn use_boundness(&self, use_id: ScopedUseId) -> Boundness {
|
||||
if self.bindings_by_use[use_id].may_be_unbound() {
|
||||
Boundness::MayBeUnbound
|
||||
} else {
|
||||
Boundness::Bound
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn public_bindings(
|
||||
@@ -285,8 +290,12 @@ impl<'db> UseDefMap<'db> {
|
||||
self.bindings_iterator(self.public_symbols[symbol].bindings())
|
||||
}
|
||||
|
||||
pub(crate) fn public_may_be_unbound(&self, symbol: ScopedSymbolId) -> bool {
|
||||
self.public_symbols[symbol].may_be_unbound()
|
||||
pub(crate) fn public_boundness(&self, symbol: ScopedSymbolId) -> Boundness {
|
||||
if self.public_symbols[symbol].may_be_unbound() {
|
||||
Boundness::MayBeUnbound
|
||||
} else {
|
||||
Boundness::Bound
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn bindings_at_declaration(
|
||||
|
||||
@@ -8,7 +8,7 @@ use crate::module_name::ModuleName;
|
||||
use crate::module_resolver::{resolve_module, Module};
|
||||
use crate::semantic_index::ast_ids::HasScopedAstId;
|
||||
use crate::semantic_index::semantic_index;
|
||||
use crate::types::{binding_ty, global_symbol_ty, infer_scope_types, Type};
|
||||
use crate::types::{binding_ty, infer_scope_types, Type};
|
||||
use crate::Db;
|
||||
|
||||
pub struct SemanticModel<'db> {
|
||||
@@ -38,10 +38,6 @@ impl<'db> SemanticModel<'db> {
|
||||
pub fn resolve_module(&self, module_name: &ModuleName) -> Option<Module> {
|
||||
resolve_module(self.db, module_name)
|
||||
}
|
||||
|
||||
pub fn global_symbol_ty(&self, module: &Module, symbol_name: &str) -> Type<'db> {
|
||||
global_symbol_ty(self.db, module.file(), symbol_name)
|
||||
}
|
||||
}
|
||||
|
||||
pub trait HasTy {
|
||||
|
||||
@@ -2,7 +2,8 @@ use crate::module_name::ModuleName;
|
||||
use crate::module_resolver::resolve_module;
|
||||
use crate::semantic_index::global_scope;
|
||||
use crate::semantic_index::symbol::ScopeId;
|
||||
use crate::types::{global_symbol_ty, Type};
|
||||
use crate::symbol::Symbol;
|
||||
use crate::types::global_symbol;
|
||||
use crate::Db;
|
||||
|
||||
/// Enumeration of various core stdlib modules, for which we have dedicated Salsa queries.
|
||||
@@ -12,6 +13,7 @@ enum CoreStdlibModule {
|
||||
Types,
|
||||
Typeshed,
|
||||
TypingExtensions,
|
||||
Typing,
|
||||
}
|
||||
|
||||
impl CoreStdlibModule {
|
||||
@@ -19,6 +21,7 @@ impl CoreStdlibModule {
|
||||
let module_name = match self {
|
||||
Self::Builtins => "builtins",
|
||||
Self::Types => "types",
|
||||
Self::Typing => "typing",
|
||||
Self::Typeshed => "_typeshed",
|
||||
Self::TypingExtensions => "typing_extensions",
|
||||
};
|
||||
@@ -29,54 +32,55 @@ impl CoreStdlibModule {
|
||||
|
||||
/// Lookup the type of `symbol` in a given core module
|
||||
///
|
||||
/// Returns `Unbound` if the given core module cannot be resolved for some reason
|
||||
fn core_module_symbol_ty<'db>(
|
||||
/// Returns `Symbol::Unbound` if the given core module cannot be resolved for some reason
|
||||
fn core_module_symbol<'db>(
|
||||
db: &'db dyn Db,
|
||||
core_module: CoreStdlibModule,
|
||||
symbol: &str,
|
||||
) -> Type<'db> {
|
||||
) -> Symbol<'db> {
|
||||
resolve_module(db, &core_module.name())
|
||||
.map(|module| global_symbol_ty(db, module.file(), symbol))
|
||||
.map(|ty| {
|
||||
if ty.is_unbound() {
|
||||
ty
|
||||
} else {
|
||||
ty.replace_unbound_with(db, Type::Never)
|
||||
}
|
||||
})
|
||||
.unwrap_or(Type::Unbound)
|
||||
.map(|module| global_symbol(db, module.file(), symbol))
|
||||
.unwrap_or(Symbol::Unbound)
|
||||
}
|
||||
|
||||
/// Lookup the type of `symbol` in the builtins namespace.
|
||||
///
|
||||
/// Returns `Unbound` if the `builtins` module isn't available for some reason.
|
||||
/// Returns `Symbol::Unbound` if the `builtins` module isn't available for some reason.
|
||||
#[inline]
|
||||
pub(crate) fn builtins_symbol_ty<'db>(db: &'db dyn Db, symbol: &str) -> Type<'db> {
|
||||
core_module_symbol_ty(db, CoreStdlibModule::Builtins, symbol)
|
||||
pub(crate) fn builtins_symbol<'db>(db: &'db dyn Db, symbol: &str) -> Symbol<'db> {
|
||||
core_module_symbol(db, CoreStdlibModule::Builtins, symbol)
|
||||
}
|
||||
|
||||
/// Lookup the type of `symbol` in the `types` module namespace.
|
||||
///
|
||||
/// Returns `Unbound` if the `types` module isn't available for some reason.
|
||||
/// Returns `Symbol::Unbound` if the `types` module isn't available for some reason.
|
||||
#[inline]
|
||||
pub(crate) fn types_symbol_ty<'db>(db: &'db dyn Db, symbol: &str) -> Type<'db> {
|
||||
core_module_symbol_ty(db, CoreStdlibModule::Types, symbol)
|
||||
pub(crate) fn types_symbol<'db>(db: &'db dyn Db, symbol: &str) -> Symbol<'db> {
|
||||
core_module_symbol(db, CoreStdlibModule::Types, symbol)
|
||||
}
|
||||
|
||||
/// Lookup the type of `symbol` in the `typing` module namespace.
|
||||
///
|
||||
/// Returns `Symbol::Unbound` if the `typing` module isn't available for some reason.
|
||||
#[inline]
|
||||
#[allow(dead_code)] // currently only used in tests
|
||||
pub(crate) fn typing_symbol<'db>(db: &'db dyn Db, symbol: &str) -> Symbol<'db> {
|
||||
core_module_symbol(db, CoreStdlibModule::Typing, symbol)
|
||||
}
|
||||
/// Lookup the type of `symbol` in the `_typeshed` module namespace.
|
||||
///
|
||||
/// Returns `Unbound` if the `_typeshed` module isn't available for some reason.
|
||||
/// Returns `Symbol::Unbound` if the `_typeshed` module isn't available for some reason.
|
||||
#[inline]
|
||||
pub(crate) fn typeshed_symbol_ty<'db>(db: &'db dyn Db, symbol: &str) -> Type<'db> {
|
||||
core_module_symbol_ty(db, CoreStdlibModule::Typeshed, symbol)
|
||||
pub(crate) fn typeshed_symbol<'db>(db: &'db dyn Db, symbol: &str) -> Symbol<'db> {
|
||||
core_module_symbol(db, CoreStdlibModule::Typeshed, symbol)
|
||||
}
|
||||
|
||||
/// Lookup the type of `symbol` in the `typing_extensions` module namespace.
|
||||
///
|
||||
/// Returns `Unbound` if the `typing_extensions` module isn't available for some reason.
|
||||
/// Returns `Symbol::Unbound` if the `typing_extensions` module isn't available for some reason.
|
||||
#[inline]
|
||||
pub(crate) fn typing_extensions_symbol_ty<'db>(db: &'db dyn Db, symbol: &str) -> Type<'db> {
|
||||
core_module_symbol_ty(db, CoreStdlibModule::TypingExtensions, symbol)
|
||||
pub(crate) fn typing_extensions_symbol<'db>(db: &'db dyn Db, symbol: &str) -> Symbol<'db> {
|
||||
core_module_symbol(db, CoreStdlibModule::TypingExtensions, symbol)
|
||||
}
|
||||
|
||||
/// Get the scope of a core stdlib module.
|
||||
|
||||
88
crates/red_knot_python_semantic/src/symbol.rs
Normal file
88
crates/red_knot_python_semantic/src/symbol.rs
Normal file
@@ -0,0 +1,88 @@
|
||||
use crate::{
|
||||
types::{Type, UnionType},
|
||||
Db,
|
||||
};
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub(crate) enum Boundness {
|
||||
Bound,
|
||||
MayBeUnbound,
|
||||
}
|
||||
|
||||
/// The result of a symbol lookup, which can either be a (possibly unbound) type
|
||||
/// or a completely unbound symbol.
|
||||
///
|
||||
/// Consider this example:
|
||||
/// ```py
|
||||
/// bound = 1
|
||||
///
|
||||
/// if flag:
|
||||
/// maybe_unbound = 2
|
||||
/// ```
|
||||
///
|
||||
/// If we look up symbols in this scope, we would get the following results:
|
||||
/// ```rs
|
||||
/// bound: Symbol::Type(Type::IntLiteral(1), Boundness::Bound),
|
||||
/// maybe_unbound: Symbol::Type(Type::IntLiteral(2), Boundness::MayBeUnbound),
|
||||
/// non_existent: Symbol::Unbound,
|
||||
/// ```
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub(crate) enum Symbol<'db> {
|
||||
Type(Type<'db>, Boundness),
|
||||
Unbound,
|
||||
}
|
||||
|
||||
impl<'db> Symbol<'db> {
|
||||
pub(crate) fn is_unbound(&self) -> bool {
|
||||
matches!(self, Symbol::Unbound)
|
||||
}
|
||||
|
||||
pub(crate) fn may_be_unbound(&self) -> bool {
|
||||
match self {
|
||||
Symbol::Type(_, Boundness::MayBeUnbound) | Symbol::Unbound => true,
|
||||
Symbol::Type(_, Boundness::Bound) => false,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn unwrap_or_unknown(&self) -> Type<'db> {
|
||||
match self {
|
||||
Symbol::Type(ty, _) => *ty,
|
||||
Symbol::Unbound => Type::Unknown,
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn as_type(&self) -> Option<Type<'db>> {
|
||||
match self {
|
||||
Symbol::Type(ty, _) => Some(*ty),
|
||||
Symbol::Unbound => None,
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
#[track_caller]
|
||||
pub(crate) fn expect_type(self) -> Type<'db> {
|
||||
self.as_type()
|
||||
.expect("Expected a (possibly unbound) type, not an unbound symbol")
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub(crate) fn replace_unbound_with(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
replacement: &Symbol<'db>,
|
||||
) -> Symbol<'db> {
|
||||
match replacement {
|
||||
Symbol::Type(replacement, _) => Symbol::Type(
|
||||
match self {
|
||||
Symbol::Type(ty, Boundness::Bound) => ty,
|
||||
Symbol::Type(ty, Boundness::MayBeUnbound) => {
|
||||
UnionType::from_elements(db, [*replacement, ty])
|
||||
}
|
||||
Symbol::Unbound => *replacement,
|
||||
},
|
||||
Boundness::Bound,
|
||||
),
|
||||
Symbol::Unbound => self,
|
||||
}
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -25,12 +25,11 @@
|
||||
//! * No type in an intersection can be a supertype of any other type in the intersection (just
|
||||
//! eliminate the supertype from the intersection).
|
||||
//! * An intersection containing two non-overlapping types should simplify to [`Type::Never`].
|
||||
use crate::types::{IntersectionType, Type, UnionType};
|
||||
|
||||
use crate::types::{InstanceType, IntersectionType, KnownClass, Type, UnionType};
|
||||
use crate::{Db, FxOrderSet};
|
||||
use smallvec::SmallVec;
|
||||
|
||||
use super::KnownClass;
|
||||
|
||||
pub(crate) struct UnionBuilder<'db> {
|
||||
elements: Vec<Type<'db>>,
|
||||
db: &'db dyn Db,
|
||||
@@ -80,7 +79,6 @@ impl<'db> UnionBuilder<'db> {
|
||||
to_remove.push(index);
|
||||
}
|
||||
}
|
||||
|
||||
match to_remove[..] {
|
||||
[] => self.elements.push(to_add),
|
||||
[index] => self.elements[index] = to_add,
|
||||
@@ -103,7 +101,6 @@ impl<'db> UnionBuilder<'db> {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
self
|
||||
}
|
||||
|
||||
@@ -173,14 +170,37 @@ impl<'db> IntersectionBuilder<'db> {
|
||||
pub(crate) fn add_negative(mut self, ty: Type<'db>) -> Self {
|
||||
// See comments above in `add_positive`; this is just the negated version.
|
||||
if let Type::Union(union) = ty {
|
||||
union
|
||||
.elements(self.db)
|
||||
for elem in union.elements(self.db) {
|
||||
self = self.add_negative(*elem);
|
||||
}
|
||||
self
|
||||
} else if let Type::Intersection(intersection) = ty {
|
||||
// (A | B) & ~(C & ~D)
|
||||
// -> (A | B) & (~C | D)
|
||||
// -> ((A | B) & ~C) | ((A | B) & D)
|
||||
// i.e. if we have an intersection of positive constraints C
|
||||
// and negative constraints D, then our new intersection
|
||||
// is (existing & ~C) | (existing & D)
|
||||
|
||||
let positive_side = intersection
|
||||
.positive(self.db)
|
||||
.iter()
|
||||
.map(|elem| self.clone().add_negative(*elem))
|
||||
.fold(IntersectionBuilder::empty(self.db), |mut builder, sub| {
|
||||
// we negate all the positive constraints while distributing
|
||||
.map(|elem| self.clone().add_negative(*elem));
|
||||
|
||||
let negative_side = intersection
|
||||
.negative(self.db)
|
||||
.iter()
|
||||
// all negative constraints end up becoming positive constraints
|
||||
.map(|elem| self.clone().add_positive(*elem));
|
||||
|
||||
positive_side.chain(negative_side).fold(
|
||||
IntersectionBuilder::empty(self.db),
|
||||
|mut builder, sub| {
|
||||
builder.intersections.extend(sub.intersections);
|
||||
builder
|
||||
})
|
||||
},
|
||||
)
|
||||
} else {
|
||||
for inner in &mut self.intersections {
|
||||
inner.add_negative(self.db, ty);
|
||||
@@ -226,8 +246,8 @@ impl<'db> InnerIntersectionBuilder<'db> {
|
||||
}
|
||||
} else {
|
||||
// ~Literal[True] & bool = Literal[False]
|
||||
if let Type::Instance(class_type) = new_positive {
|
||||
if class_type.is_known(db, KnownClass::Bool) {
|
||||
if let Type::Instance(InstanceType { class }) = new_positive {
|
||||
if class.is_known(db, KnownClass::Bool) {
|
||||
if let Some(&Type::BooleanLiteral(value)) = self
|
||||
.negative
|
||||
.iter()
|
||||
@@ -293,12 +313,11 @@ impl<'db> InnerIntersectionBuilder<'db> {
|
||||
self.add_positive(db, *neg);
|
||||
}
|
||||
}
|
||||
Type::Unbound => {}
|
||||
ty @ (Type::Any | Type::Unknown | Type::Todo) => {
|
||||
// Adding any of these types to the negative side of an intersection
|
||||
// is equivalent to adding it to the positive side. We do this to
|
||||
// simplify the representation.
|
||||
self.positive.insert(ty);
|
||||
self.add_positive(db, ty);
|
||||
}
|
||||
// ~Literal[True] & bool = Literal[False]
|
||||
Type::BooleanLiteral(bool)
|
||||
@@ -344,15 +363,7 @@ impl<'db> InnerIntersectionBuilder<'db> {
|
||||
}
|
||||
}
|
||||
|
||||
fn simplify_unbound(&mut self) {
|
||||
if self.positive.contains(&Type::Unbound) {
|
||||
self.positive.retain(Type::is_unbound);
|
||||
self.negative.clear();
|
||||
}
|
||||
}
|
||||
|
||||
fn build(mut self, db: &'db dyn Db) -> Type<'db> {
|
||||
self.simplify_unbound();
|
||||
match (self.positive.len(), self.negative.len()) {
|
||||
(0, 0) => KnownClass::Object.to_instance(db),
|
||||
(1, 0) => self.positive[0],
|
||||
@@ -371,8 +382,10 @@ mod tests {
|
||||
use crate::db::tests::TestDb;
|
||||
use crate::program::{Program, SearchPathSettings};
|
||||
use crate::python_version::PythonVersion;
|
||||
use crate::types::{KnownClass, StringLiteralType, UnionBuilder};
|
||||
use crate::stdlib::typing_symbol;
|
||||
use crate::types::{global_symbol, KnownClass, StringLiteralType, UnionBuilder};
|
||||
use crate::ProgramSettings;
|
||||
use ruff_db::files::system_path_to_file;
|
||||
use ruff_db::system::{DbWithTestSystem, SystemPathBuf};
|
||||
use test_case::test_case;
|
||||
|
||||
@@ -561,18 +574,38 @@ mod tests {
|
||||
let ta = Type::Any;
|
||||
let t1 = Type::IntLiteral(1);
|
||||
let t2 = KnownClass::Int.to_instance(&db);
|
||||
// i0 = Any & ~Literal[1]
|
||||
let i0 = IntersectionBuilder::new(&db)
|
||||
.add_positive(ta)
|
||||
.add_negative(t1)
|
||||
.build();
|
||||
let intersection = IntersectionBuilder::new(&db)
|
||||
// ta_not_i0 = int & ~(Any & ~Literal[1])
|
||||
// -> int & (~Any | Literal[1])
|
||||
// (~Any is equivalent to Any)
|
||||
// -> (int & Any) | (int & Literal[1])
|
||||
// -> (int & Any) | Literal[1]
|
||||
let ta_not_i0 = IntersectionBuilder::new(&db)
|
||||
.add_positive(t2)
|
||||
.add_negative(i0)
|
||||
.build()
|
||||
.expect_intersection();
|
||||
.build();
|
||||
|
||||
assert_eq!(intersection.pos_vec(&db), &[ta, t1]);
|
||||
assert_eq!(intersection.neg_vec(&db), &[]);
|
||||
assert_eq!(ta_not_i0.display(&db).to_string(), "int & Any | Literal[1]");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_simplify_negative_any() {
|
||||
let db = setup_db();
|
||||
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_negative(Type::Any)
|
||||
.build();
|
||||
assert_eq!(ty, Type::Any);
|
||||
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_positive(Type::Never)
|
||||
.add_negative(Type::Any)
|
||||
.build();
|
||||
assert_eq!(ty, Type::Never);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@@ -595,12 +628,69 @@ mod tests {
|
||||
assert_eq!(i1.pos_vec(&db), &[ta, t1]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn intersection_negation_distributes_over_union() {
|
||||
let db = setup_db();
|
||||
let st = typing_symbol(&db, "Sized").expect_type().to_instance(&db);
|
||||
let ht = typing_symbol(&db, "Hashable")
|
||||
.expect_type()
|
||||
.to_instance(&db);
|
||||
// sh_t: Sized & Hashable
|
||||
let sh_t = IntersectionBuilder::new(&db)
|
||||
.add_positive(st)
|
||||
.add_positive(ht)
|
||||
.build()
|
||||
.expect_intersection();
|
||||
assert_eq!(sh_t.pos_vec(&db), &[st, ht]);
|
||||
assert_eq!(sh_t.neg_vec(&db), &[]);
|
||||
|
||||
// ~sh_t => ~Sized | ~Hashable
|
||||
let not_s_h_t = IntersectionBuilder::new(&db)
|
||||
.add_negative(Type::Intersection(sh_t))
|
||||
.build()
|
||||
.expect_union();
|
||||
|
||||
// should have as elements: (~Sized),(~Hashable)
|
||||
let not_st = st.negate(&db);
|
||||
let not_ht = ht.negate(&db);
|
||||
assert_eq!(not_s_h_t.elements(&db), &[not_st, not_ht]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn mixed_intersection_negation_distributes_over_union() {
|
||||
let db = setup_db();
|
||||
let it = KnownClass::Int.to_instance(&db);
|
||||
let st = typing_symbol(&db, "Sized").expect_type().to_instance(&db);
|
||||
let ht = typing_symbol(&db, "Hashable")
|
||||
.expect_type()
|
||||
.to_instance(&db);
|
||||
// s_not_h_t: Sized & ~Hashable
|
||||
let s_not_h_t = IntersectionBuilder::new(&db)
|
||||
.add_positive(st)
|
||||
.add_negative(ht)
|
||||
.build()
|
||||
.expect_intersection();
|
||||
assert_eq!(s_not_h_t.pos_vec(&db), &[st]);
|
||||
assert_eq!(s_not_h_t.neg_vec(&db), &[ht]);
|
||||
|
||||
// let's build int & ~(Sized & ~Hashable)
|
||||
let tt = IntersectionBuilder::new(&db)
|
||||
.add_positive(it)
|
||||
.add_negative(Type::Intersection(s_not_h_t))
|
||||
.build();
|
||||
|
||||
// int & ~(Sized & ~Hashable)
|
||||
// -> int & (~Sized | Hashable)
|
||||
// -> (int & ~Sized) | (int & Hashable)
|
||||
assert_eq!(tt.display(&db).to_string(), "int & ~Sized | int & Hashable");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_self_negation() {
|
||||
let db = setup_db();
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_positive(Type::None)
|
||||
.add_negative(Type::None)
|
||||
.add_positive(Type::none(&db))
|
||||
.add_negative(Type::none(&db))
|
||||
.build();
|
||||
|
||||
assert_eq!(ty, Type::Never);
|
||||
@@ -610,63 +700,62 @@ mod tests {
|
||||
fn build_intersection_simplify_negative_never() {
|
||||
let db = setup_db();
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_positive(Type::None)
|
||||
.add_positive(Type::none(&db))
|
||||
.add_negative(Type::Never)
|
||||
.build();
|
||||
|
||||
assert_eq!(ty, Type::None);
|
||||
assert_eq!(ty, Type::none(&db));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_simplify_positive_never() {
|
||||
let db = setup_db();
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_positive(Type::None)
|
||||
.add_positive(Type::none(&db))
|
||||
.add_positive(Type::Never)
|
||||
.build();
|
||||
|
||||
assert_eq!(ty, Type::Never);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_simplify_positive_unbound() {
|
||||
let db = setup_db();
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_positive(Type::Unbound)
|
||||
.add_positive(Type::IntLiteral(1))
|
||||
.build();
|
||||
|
||||
assert_eq!(ty, Type::Unbound);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_simplify_negative_unbound() {
|
||||
let db = setup_db();
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_negative(Type::Unbound)
|
||||
.add_positive(Type::IntLiteral(1))
|
||||
.build();
|
||||
|
||||
assert_eq!(ty, Type::IntLiteral(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_simplify_negative_none() {
|
||||
let db = setup_db();
|
||||
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_negative(Type::None)
|
||||
.add_negative(Type::none(&db))
|
||||
.add_positive(Type::IntLiteral(1))
|
||||
.build();
|
||||
assert_eq!(ty, Type::IntLiteral(1));
|
||||
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_positive(Type::IntLiteral(1))
|
||||
.add_negative(Type::None)
|
||||
.add_negative(Type::none(&db))
|
||||
.build();
|
||||
assert_eq!(ty, Type::IntLiteral(1));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_negative_union_de_morgan() {
|
||||
let db = setup_db();
|
||||
|
||||
let union = UnionBuilder::new(&db)
|
||||
.add(Type::IntLiteral(1))
|
||||
.add(Type::IntLiteral(2))
|
||||
.build();
|
||||
assert_eq!(union.display(&db).to_string(), "Literal[1, 2]");
|
||||
|
||||
let ty = IntersectionBuilder::new(&db).add_negative(union).build();
|
||||
|
||||
let expected = IntersectionBuilder::new(&db)
|
||||
.add_negative(Type::IntLiteral(1))
|
||||
.add_negative(Type::IntLiteral(2))
|
||||
.build();
|
||||
|
||||
assert_eq!(ty.display(&db).to_string(), "~Literal[1] & ~Literal[2]");
|
||||
assert_eq!(ty, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_simplify_positive_type_and_positive_subtype() {
|
||||
let db = setup_db();
|
||||
@@ -800,7 +889,7 @@ mod tests {
|
||||
let db = setup_db();
|
||||
|
||||
let t1 = Type::IntLiteral(1);
|
||||
let t2 = Type::None;
|
||||
let t2 = Type::none(&db);
|
||||
|
||||
let ty = IntersectionBuilder::new(&db)
|
||||
.add_positive(t1)
|
||||
@@ -918,4 +1007,66 @@ mod tests {
|
||||
.build();
|
||||
assert_eq!(result, ty);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_intersection_of_two_unions_simplify() {
|
||||
let mut db = setup_db();
|
||||
db.write_dedented(
|
||||
"/src/module.py",
|
||||
"
|
||||
class A: ...
|
||||
class B: ...
|
||||
a = A()
|
||||
b = B()
|
||||
",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let file = system_path_to_file(&db, "src/module.py").expect("file to exist");
|
||||
|
||||
let a = global_symbol(&db, file, "a").expect_type();
|
||||
let b = global_symbol(&db, file, "b").expect_type();
|
||||
let union = UnionBuilder::new(&db).add(a).add(b).build();
|
||||
assert_eq!(union.display(&db).to_string(), "A | B");
|
||||
let reversed_union = UnionBuilder::new(&db).add(b).add(a).build();
|
||||
assert_eq!(reversed_union.display(&db).to_string(), "B | A");
|
||||
let intersection = IntersectionBuilder::new(&db)
|
||||
.add_positive(union)
|
||||
.add_positive(reversed_union)
|
||||
.build();
|
||||
assert_eq!(intersection.display(&db).to_string(), "B | A");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn build_union_of_two_intersections_simplify() {
|
||||
let mut db = setup_db();
|
||||
db.write_dedented(
|
||||
"/src/module.py",
|
||||
"
|
||||
class A: ...
|
||||
class B: ...
|
||||
a = A()
|
||||
b = B()
|
||||
",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let file = system_path_to_file(&db, "src/module.py").expect("file to exist");
|
||||
|
||||
let a = global_symbol(&db, file, "a").expect_type();
|
||||
let b = global_symbol(&db, file, "b").expect_type();
|
||||
let intersection = IntersectionBuilder::new(&db)
|
||||
.add_positive(a)
|
||||
.add_positive(b)
|
||||
.build();
|
||||
let reversed_intersection = IntersectionBuilder::new(&db)
|
||||
.add_positive(b)
|
||||
.add_positive(a)
|
||||
.build();
|
||||
let union = UnionBuilder::new(&db)
|
||||
.add(intersection)
|
||||
.add(reversed_intersection)
|
||||
.build();
|
||||
assert_eq!(union.display(&db).to_string(), "A & B");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,10 +1,15 @@
|
||||
use crate::types::{ClassLiteralType, Type};
|
||||
use crate::Db;
|
||||
use ruff_db::diagnostic::{Diagnostic, Severity};
|
||||
use ruff_db::files::File;
|
||||
use ruff_python_ast::{self as ast, AnyNodeRef};
|
||||
use ruff_text_size::{Ranged, TextRange};
|
||||
use std::borrow::Cow;
|
||||
use std::fmt::Formatter;
|
||||
use std::ops::Deref;
|
||||
use std::sync::Arc;
|
||||
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
#[derive(Debug, Eq, PartialEq, Clone)]
|
||||
pub struct TypeCheckDiagnostic {
|
||||
// TODO: Don't use string keys for rules
|
||||
pub(super) rule: String,
|
||||
@@ -27,6 +32,28 @@ impl TypeCheckDiagnostic {
|
||||
}
|
||||
}
|
||||
|
||||
impl Diagnostic for TypeCheckDiagnostic {
|
||||
fn rule(&self) -> &str {
|
||||
TypeCheckDiagnostic::rule(self)
|
||||
}
|
||||
|
||||
fn message(&self) -> Cow<str> {
|
||||
TypeCheckDiagnostic::message(self).into()
|
||||
}
|
||||
|
||||
fn file(&self) -> File {
|
||||
TypeCheckDiagnostic::file(self)
|
||||
}
|
||||
|
||||
fn range(&self) -> Option<TextRange> {
|
||||
Some(Ranged::range(self))
|
||||
}
|
||||
|
||||
fn severity(&self) -> Severity {
|
||||
Severity::Error
|
||||
}
|
||||
}
|
||||
|
||||
impl Ranged for TypeCheckDiagnostic {
|
||||
fn range(&self) -> TextRange {
|
||||
self.range
|
||||
@@ -109,3 +136,191 @@ impl<'a> IntoIterator for &'a TypeCheckDiagnostics {
|
||||
self.inner.iter()
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) struct TypeCheckDiagnosticsBuilder<'db> {
|
||||
db: &'db dyn Db,
|
||||
file: File,
|
||||
diagnostics: TypeCheckDiagnostics,
|
||||
}
|
||||
|
||||
impl<'db> TypeCheckDiagnosticsBuilder<'db> {
|
||||
pub(super) fn new(db: &'db dyn Db, file: File) -> Self {
|
||||
Self {
|
||||
db,
|
||||
file,
|
||||
diagnostics: TypeCheckDiagnostics::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Emit a diagnostic declaring that the object represented by `node` is not iterable
|
||||
pub(super) fn add_not_iterable(&mut self, node: AnyNodeRef, not_iterable_ty: Type<'db>) {
|
||||
self.add(
|
||||
node,
|
||||
"not-iterable",
|
||||
format_args!(
|
||||
"Object of type `{}` is not iterable",
|
||||
not_iterable_ty.display(self.db)
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
/// Emit a diagnostic declaring that the object represented by `node` is not iterable
|
||||
/// because its `__iter__` method is possibly unbound.
|
||||
pub(super) fn add_not_iterable_possibly_unbound(
|
||||
&mut self,
|
||||
node: AnyNodeRef,
|
||||
element_ty: Type<'db>,
|
||||
) {
|
||||
self.add(
|
||||
node,
|
||||
"not-iterable",
|
||||
format_args!(
|
||||
"Object of type `{}` is not iterable because its `__iter__` method is possibly unbound",
|
||||
element_ty.display(self.db)
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
/// Emit a diagnostic declaring that an index is out of bounds for a tuple.
|
||||
pub(super) fn add_index_out_of_bounds(
|
||||
&mut self,
|
||||
kind: &'static str,
|
||||
node: AnyNodeRef,
|
||||
tuple_ty: Type<'db>,
|
||||
length: usize,
|
||||
index: i64,
|
||||
) {
|
||||
self.add(
|
||||
node,
|
||||
"index-out-of-bounds",
|
||||
format_args!(
|
||||
"Index {index} is out of bounds for {kind} `{}` with length {length}",
|
||||
tuple_ty.display(self.db)
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
/// Emit a diagnostic declaring that a type does not support subscripting.
|
||||
pub(super) fn add_non_subscriptable(
|
||||
&mut self,
|
||||
node: AnyNodeRef,
|
||||
non_subscriptable_ty: Type<'db>,
|
||||
method: &str,
|
||||
) {
|
||||
self.add(
|
||||
node,
|
||||
"non-subscriptable",
|
||||
format_args!(
|
||||
"Cannot subscript object of type `{}` with no `{method}` method",
|
||||
non_subscriptable_ty.display(self.db)
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
pub(super) fn add_unresolved_module(
|
||||
&mut self,
|
||||
import_node: impl Into<AnyNodeRef<'db>>,
|
||||
level: u32,
|
||||
module: Option<&str>,
|
||||
) {
|
||||
self.add(
|
||||
import_node.into(),
|
||||
"unresolved-import",
|
||||
format_args!(
|
||||
"Cannot resolve import `{}{}`",
|
||||
".".repeat(level as usize),
|
||||
module.unwrap_or_default()
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
pub(super) fn add_slice_step_size_zero(&mut self, node: AnyNodeRef) {
|
||||
self.add(
|
||||
node,
|
||||
"zero-stepsize-in-slice",
|
||||
format_args!("Slice step size can not be zero"),
|
||||
);
|
||||
}
|
||||
|
||||
pub(super) fn add_invalid_assignment(
|
||||
&mut self,
|
||||
node: AnyNodeRef,
|
||||
declared_ty: Type<'db>,
|
||||
assigned_ty: Type<'db>,
|
||||
) {
|
||||
match declared_ty {
|
||||
Type::ClassLiteral(ClassLiteralType { class }) => {
|
||||
self.add(node, "invalid-assignment", format_args!(
|
||||
"Implicit shadowing of class `{}`; annotate to make it explicit if this is intentional",
|
||||
class.name(self.db)));
|
||||
}
|
||||
Type::FunctionLiteral(function) => {
|
||||
self.add(node, "invalid-assignment", format_args!(
|
||||
"Implicit shadowing of function `{}`; annotate to make it explicit if this is intentional",
|
||||
function.name(self.db)));
|
||||
}
|
||||
_ => {
|
||||
self.add(
|
||||
node,
|
||||
"invalid-assignment",
|
||||
format_args!(
|
||||
"Object of type `{}` is not assignable to `{}`",
|
||||
assigned_ty.display(self.db),
|
||||
declared_ty.display(self.db),
|
||||
),
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) fn add_possibly_unresolved_reference(&mut self, expr_name_node: &ast::ExprName) {
|
||||
let ast::ExprName { id, .. } = expr_name_node;
|
||||
|
||||
self.add(
|
||||
expr_name_node.into(),
|
||||
"possibly-unresolved-reference",
|
||||
format_args!("Name `{id}` used when possibly not defined"),
|
||||
);
|
||||
}
|
||||
|
||||
pub(super) fn add_unresolved_reference(&mut self, expr_name_node: &ast::ExprName) {
|
||||
let ast::ExprName { id, .. } = expr_name_node;
|
||||
|
||||
self.add(
|
||||
expr_name_node.into(),
|
||||
"unresolved-reference",
|
||||
format_args!("Name `{id}` used when not defined"),
|
||||
);
|
||||
}
|
||||
|
||||
/// Adds a new diagnostic.
|
||||
///
|
||||
/// The diagnostic does not get added if the rule isn't enabled for this file.
|
||||
pub(super) fn add(&mut self, node: AnyNodeRef, rule: &str, message: std::fmt::Arguments) {
|
||||
if !self.db.is_file_open(self.file) {
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO: Don't emit the diagnostic if:
|
||||
// * The enclosing node contains any syntax errors
|
||||
// * The rule is disabled for this file. We probably want to introduce a new query that
|
||||
// returns a rule selector for a given file that respects the package's settings,
|
||||
// any global pragma comments in the file, and any per-file-ignores.
|
||||
|
||||
self.diagnostics.push(TypeCheckDiagnostic {
|
||||
file: self.file,
|
||||
rule: rule.to_string(),
|
||||
message: message.to_string(),
|
||||
range: node.range(),
|
||||
});
|
||||
}
|
||||
|
||||
pub(super) fn extend(&mut self, diagnostics: &TypeCheckDiagnostics) {
|
||||
self.diagnostics.extend(diagnostics);
|
||||
}
|
||||
|
||||
pub(super) fn finish(mut self) -> TypeCheckDiagnostics {
|
||||
self.diagnostics.shrink_to_fit();
|
||||
self.diagnostics
|
||||
}
|
||||
}
|
||||
|
||||
@@ -6,7 +6,9 @@ use ruff_db::display::FormatterJoinExtension;
|
||||
use ruff_python_ast::str::Quote;
|
||||
use ruff_python_literal::escape::AsciiEscape;
|
||||
|
||||
use crate::types::{IntersectionType, Type, UnionType};
|
||||
use crate::types::{
|
||||
ClassLiteralType, InstanceType, IntersectionType, KnownClass, SubclassOfType, Type, UnionType,
|
||||
};
|
||||
use crate::Db;
|
||||
use rustc_hash::FxHashMap;
|
||||
|
||||
@@ -64,8 +66,11 @@ impl Display for DisplayRepresentation<'_> {
|
||||
Type::Any => f.write_str("Any"),
|
||||
Type::Never => f.write_str("Never"),
|
||||
Type::Unknown => f.write_str("Unknown"),
|
||||
Type::Unbound => f.write_str("Unbound"),
|
||||
Type::None => f.write_str("None"),
|
||||
Type::Instance(InstanceType { class })
|
||||
if class.is_known(self.db, KnownClass::NoneType) =>
|
||||
{
|
||||
f.write_str("None")
|
||||
}
|
||||
// `[Type::Todo]`'s display should be explicit that is not a valid display of
|
||||
// any other type
|
||||
Type::Todo => f.write_str("@Todo"),
|
||||
@@ -73,8 +78,12 @@ impl Display for DisplayRepresentation<'_> {
|
||||
write!(f, "<module '{:?}'>", file.path(self.db))
|
||||
}
|
||||
// TODO functions and classes should display using a fully qualified name
|
||||
Type::ClassLiteral(class) => f.write_str(class.name(self.db)),
|
||||
Type::Instance(class) => f.write_str(class.name(self.db)),
|
||||
Type::ClassLiteral(ClassLiteralType { class }) => f.write_str(class.name(self.db)),
|
||||
Type::SubclassOf(SubclassOfType { class }) => {
|
||||
write!(f, "type[{}]", class.name(self.db))
|
||||
}
|
||||
Type::Instance(InstanceType { class }) => f.write_str(class.name(self.db)),
|
||||
Type::KnownInstance(known_instance) => f.write_str(known_instance.as_str()),
|
||||
Type::FunctionLiteral(function) => f.write_str(function.name(self.db)),
|
||||
Type::Union(union) => union.display(self.db).fmt(f),
|
||||
Type::Intersection(intersection) => intersection.display(self.db).fmt(f),
|
||||
@@ -90,6 +99,28 @@ impl Display for DisplayRepresentation<'_> {
|
||||
|
||||
escape.bytes_repr().write(f)
|
||||
}
|
||||
Type::SliceLiteral(slice) => {
|
||||
f.write_str("slice[")?;
|
||||
if let Some(start) = slice.start(self.db) {
|
||||
write!(f, "Literal[{start}]")?;
|
||||
} else {
|
||||
f.write_str("None")?;
|
||||
}
|
||||
|
||||
f.write_str(", ")?;
|
||||
|
||||
if let Some(stop) = slice.stop(self.db) {
|
||||
write!(f, "Literal[{stop}]")?;
|
||||
} else {
|
||||
f.write_str("None")?;
|
||||
}
|
||||
|
||||
if let Some(step) = slice.step(self.db) {
|
||||
write!(f, ", Literal[{step}]")?;
|
||||
}
|
||||
|
||||
f.write_str("]")
|
||||
}
|
||||
Type::Tuple(tuple) => {
|
||||
f.write_str("tuple[")?;
|
||||
let elements = tuple.elements(self.db);
|
||||
@@ -301,7 +332,9 @@ mod tests {
|
||||
use ruff_db::system::{DbWithTestSystem, SystemPathBuf};
|
||||
|
||||
use crate::db::tests::TestDb;
|
||||
use crate::types::{global_symbol_ty, BytesLiteralType, StringLiteralType, Type, UnionType};
|
||||
use crate::types::{
|
||||
global_symbol, BytesLiteralType, SliceLiteralType, StringLiteralType, Type, UnionType,
|
||||
};
|
||||
use crate::{Program, ProgramSettings, PythonVersion, SearchPathSettings};
|
||||
|
||||
fn setup_db() -> TestDb {
|
||||
@@ -346,18 +379,18 @@ mod tests {
|
||||
let union_elements = &[
|
||||
Type::Unknown,
|
||||
Type::IntLiteral(-1),
|
||||
global_symbol_ty(&db, mod_file, "A"),
|
||||
global_symbol(&db, mod_file, "A").expect_type(),
|
||||
Type::StringLiteral(StringLiteralType::new(&db, "A")),
|
||||
Type::BytesLiteral(BytesLiteralType::new(&db, [0u8].as_slice())),
|
||||
Type::BytesLiteral(BytesLiteralType::new(&db, [7u8].as_slice())),
|
||||
Type::IntLiteral(0),
|
||||
Type::IntLiteral(1),
|
||||
Type::StringLiteral(StringLiteralType::new(&db, "B")),
|
||||
global_symbol_ty(&db, mod_file, "foo"),
|
||||
global_symbol_ty(&db, mod_file, "bar"),
|
||||
global_symbol_ty(&db, mod_file, "B"),
|
||||
global_symbol(&db, mod_file, "foo").expect_type(),
|
||||
global_symbol(&db, mod_file, "bar").expect_type(),
|
||||
global_symbol(&db, mod_file, "B").expect_type(),
|
||||
Type::BooleanLiteral(true),
|
||||
Type::None,
|
||||
Type::none(&db),
|
||||
];
|
||||
let union = UnionType::from_elements(&db, union_elements).expect_union();
|
||||
let display = format!("{}", union.display(&db));
|
||||
@@ -376,4 +409,46 @@ mod tests {
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_slice_literal_display() {
|
||||
let db = setup_db();
|
||||
|
||||
assert_eq!(
|
||||
Type::SliceLiteral(SliceLiteralType::new(&db, None, None, None))
|
||||
.display(&db)
|
||||
.to_string(),
|
||||
"slice[None, None]"
|
||||
);
|
||||
assert_eq!(
|
||||
Type::SliceLiteral(SliceLiteralType::new(&db, Some(1), None, None))
|
||||
.display(&db)
|
||||
.to_string(),
|
||||
"slice[Literal[1], None]"
|
||||
);
|
||||
assert_eq!(
|
||||
Type::SliceLiteral(SliceLiteralType::new(&db, None, Some(2), None))
|
||||
.display(&db)
|
||||
.to_string(),
|
||||
"slice[None, Literal[2]]"
|
||||
);
|
||||
assert_eq!(
|
||||
Type::SliceLiteral(SliceLiteralType::new(&db, Some(1), Some(5), None))
|
||||
.display(&db)
|
||||
.to_string(),
|
||||
"slice[Literal[1], Literal[5]]"
|
||||
);
|
||||
assert_eq!(
|
||||
Type::SliceLiteral(SliceLiteralType::new(&db, Some(1), Some(5), Some(2)))
|
||||
.display(&db)
|
||||
.to_string(),
|
||||
"slice[Literal[1], Literal[5], Literal[2]]"
|
||||
);
|
||||
assert_eq!(
|
||||
Type::SliceLiteral(SliceLiteralType::new(&db, None, None, Some(2)))
|
||||
.display(&db)
|
||||
.to_string(),
|
||||
"slice[None, None, Literal[2]]"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
505
crates/red_knot_python_semantic/src/types/mro.rs
Normal file
505
crates/red_knot_python_semantic/src/types/mro.rs
Normal file
@@ -0,0 +1,505 @@
|
||||
use std::collections::VecDeque;
|
||||
use std::ops::Deref;
|
||||
|
||||
use indexmap::IndexSet;
|
||||
use itertools::Either;
|
||||
use rustc_hash::FxHashSet;
|
||||
|
||||
use super::{Class, ClassLiteralType, KnownClass, KnownInstanceType, Type};
|
||||
use crate::Db;
|
||||
|
||||
/// The inferred method resolution order of a given class.
|
||||
///
|
||||
/// See [`Class::iter_mro`] for more details.
|
||||
#[derive(PartialEq, Eq, Clone, Debug)]
|
||||
pub(super) struct Mro<'db>(Box<[ClassBase<'db>]>);
|
||||
|
||||
impl<'db> Mro<'db> {
|
||||
/// Attempt to resolve the MRO of a given class
|
||||
///
|
||||
/// In the event that a possible list of bases would (or could) lead to a
|
||||
/// `TypeError` being raised at runtime due to an unresolvable MRO, we infer
|
||||
/// the MRO of the class as being `[<the class in question>, Unknown, object]`.
|
||||
/// This seems most likely to reduce the possibility of cascading errors
|
||||
/// elsewhere.
|
||||
///
|
||||
/// (We emit a diagnostic warning about the runtime `TypeError` in
|
||||
/// [`super::infer::TypeInferenceBuilder::infer_region_scope`].)
|
||||
pub(super) fn of_class(db: &'db dyn Db, class: Class<'db>) -> Result<Self, MroError<'db>> {
|
||||
Self::of_class_impl(db, class).map_err(|error_kind| {
|
||||
let fallback_mro = Self::from([
|
||||
ClassBase::Class(class),
|
||||
ClassBase::Unknown,
|
||||
ClassBase::object(db),
|
||||
]);
|
||||
MroError {
|
||||
kind: error_kind,
|
||||
fallback_mro,
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn of_class_impl(db: &'db dyn Db, class: Class<'db>) -> Result<Self, MroErrorKind<'db>> {
|
||||
let class_bases = class.explicit_bases(db);
|
||||
|
||||
match class_bases {
|
||||
// `builtins.object` is the special case:
|
||||
// the only class in Python that has an MRO with length <2
|
||||
[] if class.is_known(db, KnownClass::Object) => {
|
||||
Ok(Self::from([ClassBase::Class(class)]))
|
||||
}
|
||||
|
||||
// All other classes in Python have an MRO with length >=2.
|
||||
// Even if a class has no explicit base classes,
|
||||
// it will implicitly inherit from `object` at runtime;
|
||||
// `object` will appear in the class's `__bases__` list and `__mro__`:
|
||||
//
|
||||
// ```pycon
|
||||
// >>> class Foo: ...
|
||||
// ...
|
||||
// >>> Foo.__bases__
|
||||
// (<class 'object'>,)
|
||||
// >>> Foo.__mro__
|
||||
// (<class '__main__.Foo'>, <class 'object'>)
|
||||
// ```
|
||||
[] => Ok(Self::from([ClassBase::Class(class), ClassBase::object(db)])),
|
||||
|
||||
// Fast path for a class that has only a single explicit base.
|
||||
//
|
||||
// This *could* theoretically be handled by the final branch below,
|
||||
// but it's a common case (i.e., worth optimizing for),
|
||||
// and the `c3_merge` function requires lots of allocations.
|
||||
[single_base] => {
|
||||
let single_base = ClassBase::try_from_ty(*single_base).ok_or(*single_base);
|
||||
single_base.map_or_else(
|
||||
|invalid_base_ty| {
|
||||
let bases_info = Box::from([(0, invalid_base_ty)]);
|
||||
Err(MroErrorKind::InvalidBases(bases_info))
|
||||
},
|
||||
|single_base| {
|
||||
if let ClassBase::Class(class_base) = single_base {
|
||||
if class_is_cyclically_defined(db, class_base) {
|
||||
return Err(MroErrorKind::CyclicClassDefinition);
|
||||
}
|
||||
}
|
||||
let mro = std::iter::once(ClassBase::Class(class))
|
||||
.chain(single_base.mro(db))
|
||||
.collect();
|
||||
Ok(mro)
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
// The class has multiple explicit bases.
|
||||
//
|
||||
// We'll fallback to a full implementation of the C3-merge algorithm to determine
|
||||
// what MRO Python will give this class at runtime
|
||||
// (if an MRO is indeed resolvable at all!)
|
||||
multiple_bases => {
|
||||
if class_is_cyclically_defined(db, class) {
|
||||
return Err(MroErrorKind::CyclicClassDefinition);
|
||||
}
|
||||
|
||||
let mut valid_bases = vec![];
|
||||
let mut invalid_bases = vec![];
|
||||
|
||||
for (i, base) in multiple_bases.iter().enumerate() {
|
||||
match ClassBase::try_from_ty(*base).ok_or(*base) {
|
||||
Ok(valid_base) => valid_bases.push(valid_base),
|
||||
Err(invalid_base) => invalid_bases.push((i, invalid_base)),
|
||||
}
|
||||
}
|
||||
|
||||
if !invalid_bases.is_empty() {
|
||||
return Err(MroErrorKind::InvalidBases(invalid_bases.into_boxed_slice()));
|
||||
}
|
||||
|
||||
let mut seqs = vec![VecDeque::from([ClassBase::Class(class)])];
|
||||
for base in &valid_bases {
|
||||
seqs.push(base.mro(db).collect());
|
||||
}
|
||||
seqs.push(valid_bases.iter().copied().collect());
|
||||
|
||||
c3_merge(seqs).ok_or_else(|| {
|
||||
let mut seen_bases = FxHashSet::default();
|
||||
let mut duplicate_bases = vec![];
|
||||
for (index, base) in valid_bases
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(index, base)| Some((index, base.into_class_literal_type()?)))
|
||||
{
|
||||
if !seen_bases.insert(base) {
|
||||
duplicate_bases.push((index, base));
|
||||
}
|
||||
}
|
||||
|
||||
if duplicate_bases.is_empty() {
|
||||
MroErrorKind::UnresolvableMro {
|
||||
bases_list: valid_bases.into_boxed_slice(),
|
||||
}
|
||||
} else {
|
||||
MroErrorKind::DuplicateBases(duplicate_bases.into_boxed_slice())
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db, const N: usize> From<[ClassBase<'db>; N]> for Mro<'db> {
|
||||
fn from(value: [ClassBase<'db>; N]) -> Self {
|
||||
Self(Box::from(value))
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> From<Vec<ClassBase<'db>>> for Mro<'db> {
|
||||
fn from(value: Vec<ClassBase<'db>>) -> Self {
|
||||
Self(value.into_boxed_slice())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> Deref for Mro<'db> {
|
||||
type Target = [ClassBase<'db>];
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> FromIterator<ClassBase<'db>> for Mro<'db> {
|
||||
fn from_iter<T: IntoIterator<Item = ClassBase<'db>>>(iter: T) -> Self {
|
||||
Self(iter.into_iter().collect())
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterator that yields elements of a class's MRO.
|
||||
///
|
||||
/// We avoid materialising the *full* MRO unless it is actually necessary:
|
||||
/// - Materialising the full MRO is expensive
|
||||
/// - We need to do it for every class in the code that we're checking, as we need to make sure
|
||||
/// that there are no class definitions in the code we're checking that would cause an
|
||||
/// exception to be raised at runtime. But the same does *not* necessarily apply for every class
|
||||
/// in third-party and stdlib dependencies: we never emit diagnostics about non-first-party code.
|
||||
/// - However, we *do* need to resolve attribute accesses on classes/instances from
|
||||
/// third-party and stdlib dependencies. That requires iterating over the MRO of third-party/stdlib
|
||||
/// classes, but not necessarily the *whole* MRO: often just the first element is enough.
|
||||
/// Luckily we know that for any class `X`, the first element of `X`'s MRO will always be `X` itself.
|
||||
/// We can therefore avoid resolving the full MRO for many third-party/stdlib classes while still
|
||||
/// being faithful to the runtime semantics.
|
||||
///
|
||||
/// Even for first-party code, where we will have to resolve the MRO for every class we encounter,
|
||||
/// loading the cached MRO comes with a certain amount of overhead, so it's best to avoid calling the
|
||||
/// Salsa-tracked [`Class::try_mro`] method unless it's absolutely necessary.
|
||||
pub(super) struct MroIterator<'db> {
|
||||
db: &'db dyn Db,
|
||||
|
||||
/// The class whose MRO we're iterating over
|
||||
class: Class<'db>,
|
||||
|
||||
/// Whether or not we've already yielded the first element of the MRO
|
||||
first_element_yielded: bool,
|
||||
|
||||
/// Iterator over all elements of the MRO except the first.
|
||||
///
|
||||
/// The full MRO is expensive to materialize, so this field is `None`
|
||||
/// unless we actually *need* to iterate past the first element of the MRO,
|
||||
/// at which point it is lazily materialized.
|
||||
subsequent_elements: Option<std::slice::Iter<'db, ClassBase<'db>>>,
|
||||
}
|
||||
|
||||
impl<'db> MroIterator<'db> {
|
||||
pub(super) fn new(db: &'db dyn Db, class: Class<'db>) -> Self {
|
||||
Self {
|
||||
db,
|
||||
class,
|
||||
first_element_yielded: false,
|
||||
subsequent_elements: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Materialize the full MRO of the class.
|
||||
/// Return an iterator over that MRO which skips the first element of the MRO.
|
||||
fn full_mro_except_first_element(&mut self) -> impl Iterator<Item = ClassBase<'db>> + '_ {
|
||||
self.subsequent_elements
|
||||
.get_or_insert_with(|| {
|
||||
let mut full_mro_iter = match self.class.try_mro(self.db) {
|
||||
Ok(mro) => mro.iter(),
|
||||
Err(error) => error.fallback_mro().iter(),
|
||||
};
|
||||
full_mro_iter.next();
|
||||
full_mro_iter
|
||||
})
|
||||
.copied()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> Iterator for MroIterator<'db> {
|
||||
type Item = ClassBase<'db>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
if !self.first_element_yielded {
|
||||
self.first_element_yielded = true;
|
||||
return Some(ClassBase::Class(self.class));
|
||||
}
|
||||
self.full_mro_except_first_element().next()
|
||||
}
|
||||
}
|
||||
|
||||
impl std::iter::FusedIterator for MroIterator<'_> {}
|
||||
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub(super) struct MroError<'db> {
|
||||
kind: MroErrorKind<'db>,
|
||||
fallback_mro: Mro<'db>,
|
||||
}
|
||||
|
||||
impl<'db> MroError<'db> {
|
||||
/// Return an [`MroErrorKind`] variant describing why we could not resolve the MRO for this class.
|
||||
pub(super) fn reason(&self) -> &MroErrorKind<'db> {
|
||||
&self.kind
|
||||
}
|
||||
|
||||
/// Return the fallback MRO we should infer for this class during type inference
|
||||
/// (since accurate resolution of its "true" MRO was impossible)
|
||||
pub(super) fn fallback_mro(&self) -> &Mro<'db> {
|
||||
&self.fallback_mro
|
||||
}
|
||||
}
|
||||
|
||||
/// Possible ways in which attempting to resolve the MRO of a class might fail.
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub(super) enum MroErrorKind<'db> {
|
||||
/// The class inherits from one or more invalid bases.
|
||||
///
|
||||
/// To avoid excessive complexity in our implementation,
|
||||
/// we only permit classes to inherit from class-literal types,
|
||||
/// `Todo`, `Unknown` or `Any`. Anything else results in us
|
||||
/// emitting a diagnostic.
|
||||
///
|
||||
/// This variant records the indices and types of class bases
|
||||
/// that we deem to be invalid. The indices are the indices of nodes
|
||||
/// in the bases list of the class's [`StmtClassDef`](ruff_python_ast::StmtClassDef) node.
|
||||
/// Each index is the index of a node representing an invalid base.
|
||||
InvalidBases(Box<[(usize, Type<'db>)]>),
|
||||
|
||||
/// The class inherits from itself!
|
||||
///
|
||||
/// This is very unlikely to happen in working real-world code,
|
||||
/// but it's important to explicitly account for it.
|
||||
/// If we don't, there's a possibility of an infinite loop and a panic.
|
||||
CyclicClassDefinition,
|
||||
|
||||
/// The class has one or more duplicate bases.
|
||||
///
|
||||
/// This variant records the indices and [`Class`]es
|
||||
/// of the duplicate bases. The indices are the indices of nodes
|
||||
/// in the bases list of the class's [`StmtClassDef`](ruff_python_ast::StmtClassDef) node.
|
||||
/// Each index is the index of a node representing a duplicate base.
|
||||
DuplicateBases(Box<[(usize, Class<'db>)]>),
|
||||
|
||||
/// The MRO is otherwise unresolvable through the C3-merge algorithm.
|
||||
///
|
||||
/// See [`c3_merge`] for more details.
|
||||
UnresolvableMro { bases_list: Box<[ClassBase<'db>]> },
|
||||
}
|
||||
|
||||
/// Enumeration of the possible kinds of types we allow in class bases.
|
||||
///
|
||||
/// This is much more limited than the [`Type`] enum:
|
||||
/// all types that would be invalid to have as a class base are
|
||||
/// transformed into [`ClassBase::Unknown`]
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub(super) enum ClassBase<'db> {
|
||||
Any,
|
||||
Unknown,
|
||||
Todo,
|
||||
Class(Class<'db>),
|
||||
}
|
||||
|
||||
impl<'db> ClassBase<'db> {
|
||||
pub(super) fn display(self, db: &'db dyn Db) -> impl std::fmt::Display + 'db {
|
||||
struct Display<'db> {
|
||||
base: ClassBase<'db>,
|
||||
db: &'db dyn Db,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Display<'_> {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match self.base {
|
||||
ClassBase::Any => f.write_str("Any"),
|
||||
ClassBase::Todo => f.write_str("Todo"),
|
||||
ClassBase::Unknown => f.write_str("Unknown"),
|
||||
ClassBase::Class(class) => write!(f, "<class '{}'>", class.name(self.db)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Display { base: self, db }
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
#[track_caller]
|
||||
pub(super) fn expect_class_base(self) -> Class<'db> {
|
||||
match self {
|
||||
ClassBase::Class(class) => class,
|
||||
_ => panic!("Expected a `ClassBase::Class()` variant"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Return a `ClassBase` representing the class `builtins.object`
|
||||
fn object(db: &'db dyn Db) -> Self {
|
||||
KnownClass::Object
|
||||
.to_class(db)
|
||||
.into_class_literal()
|
||||
.map_or(Self::Unknown, |ClassLiteralType { class }| {
|
||||
Self::Class(class)
|
||||
})
|
||||
}
|
||||
|
||||
/// Attempt to resolve `ty` into a `ClassBase`.
|
||||
///
|
||||
/// Return `None` if `ty` is not an acceptable type for a class base.
|
||||
fn try_from_ty(ty: Type<'db>) -> Option<Self> {
|
||||
match ty {
|
||||
Type::Any => Some(Self::Any),
|
||||
Type::Unknown => Some(Self::Unknown),
|
||||
Type::Todo => Some(Self::Todo),
|
||||
Type::ClassLiteral(ClassLiteralType { class }) => Some(Self::Class(class)),
|
||||
Type::Union(_) => None, // TODO -- forces consideration of multiple possible MROs?
|
||||
Type::Intersection(_) => None, // TODO -- probably incorrect?
|
||||
Type::Instance(_) => None, // TODO -- handle `__mro_entries__`?
|
||||
Type::Never
|
||||
| Type::BooleanLiteral(_)
|
||||
| Type::FunctionLiteral(_)
|
||||
| Type::BytesLiteral(_)
|
||||
| Type::IntLiteral(_)
|
||||
| Type::StringLiteral(_)
|
||||
| Type::LiteralString
|
||||
| Type::Tuple(_)
|
||||
| Type::SliceLiteral(_)
|
||||
| Type::ModuleLiteral(_)
|
||||
| Type::SubclassOf(_) => None,
|
||||
Type::KnownInstance(known_instance) => match known_instance {
|
||||
KnownInstanceType::Literal => None,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn into_class_literal_type(self) -> Option<Class<'db>> {
|
||||
match self {
|
||||
Self::Class(class) => Some(class),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterate over the MRO of this base
|
||||
fn mro(
|
||||
self,
|
||||
db: &'db dyn Db,
|
||||
) -> Either<impl Iterator<Item = ClassBase<'db>>, impl Iterator<Item = ClassBase<'db>>> {
|
||||
match self {
|
||||
ClassBase::Any => Either::Left([ClassBase::Any, ClassBase::object(db)].into_iter()),
|
||||
ClassBase::Unknown => {
|
||||
Either::Left([ClassBase::Unknown, ClassBase::object(db)].into_iter())
|
||||
}
|
||||
ClassBase::Todo => Either::Left([ClassBase::Todo, ClassBase::object(db)].into_iter()),
|
||||
ClassBase::Class(class) => Either::Right(class.iter_mro(db)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'db> From<ClassBase<'db>> for Type<'db> {
|
||||
fn from(value: ClassBase<'db>) -> Self {
|
||||
match value {
|
||||
ClassBase::Any => Type::Any,
|
||||
ClassBase::Todo => Type::Todo,
|
||||
ClassBase::Unknown => Type::Unknown,
|
||||
ClassBase::Class(class) => Type::ClassLiteral(ClassLiteralType { class }),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Implementation of the [C3-merge algorithm] for calculating a Python class's
|
||||
/// [method resolution order].
|
||||
///
|
||||
/// [C3-merge algorithm]: https://docs.python.org/3/howto/mro.html#python-2-3-mro
|
||||
/// [method resolution order]: https://docs.python.org/3/glossary.html#term-method-resolution-order
|
||||
fn c3_merge(mut sequences: Vec<VecDeque<ClassBase>>) -> Option<Mro> {
|
||||
// Most MROs aren't that long...
|
||||
let mut mro = Vec::with_capacity(8);
|
||||
|
||||
loop {
|
||||
sequences.retain(|sequence| !sequence.is_empty());
|
||||
|
||||
if sequences.is_empty() {
|
||||
return Some(Mro::from(mro));
|
||||
}
|
||||
|
||||
// If the candidate exists "deeper down" in the inheritance hierarchy,
|
||||
// we should refrain from adding it to the MRO for now. Add the first candidate
|
||||
// for which this does not hold true. If this holds true for all candidates,
|
||||
// return `None`; it will be impossible to find a consistent MRO for the class
|
||||
// with the given bases.
|
||||
let mro_entry = sequences.iter().find_map(|outer_sequence| {
|
||||
let candidate = outer_sequence[0];
|
||||
|
||||
let not_head = sequences
|
||||
.iter()
|
||||
.all(|sequence| sequence.iter().skip(1).all(|base| base != &candidate));
|
||||
|
||||
not_head.then_some(candidate)
|
||||
})?;
|
||||
|
||||
mro.push(mro_entry);
|
||||
|
||||
// Make sure we don't try to add the candidate to the MRO twice:
|
||||
for sequence in &mut sequences {
|
||||
if sequence[0] == mro_entry {
|
||||
sequence.pop_front();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Return `true` if this class appears to be a cyclic definition,
|
||||
/// i.e., it inherits either directly or indirectly from itself.
|
||||
///
|
||||
/// A class definition like this will fail at runtime,
|
||||
/// but we must be resilient to it or we could panic.
|
||||
fn class_is_cyclically_defined(db: &dyn Db, class: Class) -> bool {
|
||||
fn is_cyclically_defined_recursive<'db>(
|
||||
db: &'db dyn Db,
|
||||
class: Class<'db>,
|
||||
classes_to_watch: &mut IndexSet<Class<'db>>,
|
||||
) -> bool {
|
||||
if !classes_to_watch.insert(class) {
|
||||
return true;
|
||||
}
|
||||
for explicit_base_class in class
|
||||
.explicit_bases(db)
|
||||
.iter()
|
||||
.copied()
|
||||
.filter_map(Type::into_class_literal)
|
||||
.map(|ClassLiteralType { class }| class)
|
||||
{
|
||||
// Each base must be considered in isolation.
|
||||
// This is due to the fact that if a class uses multiple inheritance,
|
||||
// there could easily be a situation where two bases have the same class in their MROs;
|
||||
// that isn't enough to constitute the class being cyclically defined.
|
||||
let classes_to_watch_len = classes_to_watch.len();
|
||||
if is_cyclically_defined_recursive(db, explicit_base_class, classes_to_watch) {
|
||||
return true;
|
||||
}
|
||||
classes_to_watch.truncate(classes_to_watch_len);
|
||||
}
|
||||
false
|
||||
}
|
||||
|
||||
class
|
||||
.explicit_bases(db)
|
||||
.iter()
|
||||
.copied()
|
||||
.filter_map(Type::into_class_literal)
|
||||
.map(|ClassLiteralType { class }| class)
|
||||
.any(|base_class| is_cyclically_defined_recursive(db, base_class, &mut IndexSet::default()))
|
||||
}
|
||||
@@ -1,16 +1,19 @@
|
||||
use crate::semantic_index::ast_ids::HasScopedAstId;
|
||||
use crate::semantic_index::constraint::{Constraint, PatternConstraint};
|
||||
use crate::semantic_index::constraint::{Constraint, ConstraintNode, PatternConstraint};
|
||||
use crate::semantic_index::definition::Definition;
|
||||
use crate::semantic_index::expression::Expression;
|
||||
use crate::semantic_index::symbol::{ScopeId, ScopedSymbolId, SymbolTable};
|
||||
use crate::semantic_index::symbol_table;
|
||||
use crate::types::{
|
||||
infer_expression_types, IntersectionBuilder, KnownFunction, Type, UnionBuilder,
|
||||
infer_expression_types, ClassLiteralType, InstanceType, IntersectionBuilder, KnownClass,
|
||||
KnownConstraintFunction, KnownFunction, Truthiness, Type, UnionBuilder,
|
||||
};
|
||||
use crate::Db;
|
||||
use itertools::Itertools;
|
||||
use ruff_python_ast as ast;
|
||||
use ruff_python_ast::{BoolOp, ExprBoolOp};
|
||||
use rustc_hash::FxHashMap;
|
||||
use std::collections::hash_map::Entry;
|
||||
use std::sync::Arc;
|
||||
|
||||
/// Return the type constraint that `test` (if true) would place on `definition`, if any.
|
||||
@@ -34,15 +37,20 @@ pub(crate) fn narrowing_constraint<'db>(
|
||||
constraint: Constraint<'db>,
|
||||
definition: Definition<'db>,
|
||||
) -> Option<Type<'db>> {
|
||||
match constraint {
|
||||
Constraint::Expression(expression) => {
|
||||
all_narrowing_constraints_for_expression(db, expression)
|
||||
.get(&definition.symbol(db))
|
||||
.copied()
|
||||
let constraints = match constraint.node {
|
||||
ConstraintNode::Expression(expression) => {
|
||||
if constraint.is_positive {
|
||||
all_narrowing_constraints_for_expression(db, expression)
|
||||
} else {
|
||||
all_negative_narrowing_constraints_for_expression(db, expression)
|
||||
}
|
||||
}
|
||||
Constraint::Pattern(pattern) => all_narrowing_constraints_for_pattern(db, pattern)
|
||||
.get(&definition.symbol(db))
|
||||
.copied(),
|
||||
ConstraintNode::Pattern(pattern) => all_narrowing_constraints_for_pattern(db, pattern),
|
||||
};
|
||||
if let Some(constraints) = constraints {
|
||||
constraints.get(&definition.symbol(db)).copied()
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
@@ -50,106 +58,184 @@ pub(crate) fn narrowing_constraint<'db>(
|
||||
fn all_narrowing_constraints_for_pattern<'db>(
|
||||
db: &'db dyn Db,
|
||||
pattern: PatternConstraint<'db>,
|
||||
) -> NarrowingConstraints<'db> {
|
||||
NarrowingConstraintsBuilder::new(db, Constraint::Pattern(pattern)).finish()
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
NarrowingConstraintsBuilder::new(db, ConstraintNode::Pattern(pattern), true).finish()
|
||||
}
|
||||
|
||||
#[salsa::tracked(return_ref)]
|
||||
fn all_narrowing_constraints_for_expression<'db>(
|
||||
db: &'db dyn Db,
|
||||
expression: Expression<'db>,
|
||||
) -> NarrowingConstraints<'db> {
|
||||
NarrowingConstraintsBuilder::new(db, Constraint::Expression(expression)).finish()
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
NarrowingConstraintsBuilder::new(db, ConstraintNode::Expression(expression), true).finish()
|
||||
}
|
||||
|
||||
/// Generate a constraint from the *type* of the second argument of an `isinstance` call.
|
||||
#[salsa::tracked(return_ref)]
|
||||
fn all_negative_narrowing_constraints_for_expression<'db>(
|
||||
db: &'db dyn Db,
|
||||
expression: Expression<'db>,
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
NarrowingConstraintsBuilder::new(db, ConstraintNode::Expression(expression), false).finish()
|
||||
}
|
||||
|
||||
/// Generate a constraint from the type of a `classinfo` argument to `isinstance` or `issubclass`.
|
||||
///
|
||||
/// Example: for `isinstance(…, str)`, we would infer `Type::ClassLiteral(str)` from the
|
||||
/// second argument, but we need to generate a `Type::Instance(str)` constraint that can
|
||||
/// be used to narrow down the type of the first argument.
|
||||
fn generate_isinstance_constraint<'db>(
|
||||
/// The `classinfo` argument can be a class literal, a tuple of (tuples of) class literals. PEP 604
|
||||
/// union types are not yet supported. Returns `None` if the `classinfo` argument has a wrong type.
|
||||
fn generate_classinfo_constraint<'db, F>(
|
||||
db: &'db dyn Db,
|
||||
classinfo: &Type<'db>,
|
||||
) -> Option<Type<'db>> {
|
||||
to_constraint: F,
|
||||
) -> Option<Type<'db>>
|
||||
where
|
||||
F: Fn(ClassLiteralType<'db>) -> Type<'db> + Copy,
|
||||
{
|
||||
match classinfo {
|
||||
Type::ClassLiteral(class) => Some(Type::Instance(*class)),
|
||||
Type::Tuple(tuple) => {
|
||||
let mut builder = UnionBuilder::new(db);
|
||||
for element in tuple.elements(db) {
|
||||
builder = builder.add(generate_isinstance_constraint(db, element)?);
|
||||
builder = builder.add(generate_classinfo_constraint(db, element, to_constraint)?);
|
||||
}
|
||||
Some(builder.build())
|
||||
}
|
||||
Type::ClassLiteral(class_literal_type) => Some(to_constraint(*class_literal_type)),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
type NarrowingConstraints<'db> = FxHashMap<ScopedSymbolId, Type<'db>>;
|
||||
|
||||
fn merge_constraints_and<'db>(
|
||||
into: &mut NarrowingConstraints<'db>,
|
||||
from: NarrowingConstraints<'db>,
|
||||
db: &'db dyn Db,
|
||||
) {
|
||||
for (key, value) in from {
|
||||
match into.entry(key) {
|
||||
Entry::Occupied(mut entry) => {
|
||||
*entry.get_mut() = IntersectionBuilder::new(db)
|
||||
.add_positive(*entry.get())
|
||||
.add_positive(value)
|
||||
.build();
|
||||
}
|
||||
Entry::Vacant(entry) => {
|
||||
entry.insert(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn merge_constraints_or<'db>(
|
||||
into: &mut NarrowingConstraints<'db>,
|
||||
from: &NarrowingConstraints<'db>,
|
||||
db: &'db dyn Db,
|
||||
) {
|
||||
for (key, value) in from {
|
||||
match into.entry(*key) {
|
||||
Entry::Occupied(mut entry) => {
|
||||
*entry.get_mut() = UnionBuilder::new(db).add(*entry.get()).add(*value).build();
|
||||
}
|
||||
Entry::Vacant(entry) => {
|
||||
entry.insert(KnownClass::Object.to_instance(db));
|
||||
}
|
||||
}
|
||||
}
|
||||
for (key, value) in into.iter_mut() {
|
||||
if !from.contains_key(key) {
|
||||
*value = KnownClass::Object.to_instance(db);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct NarrowingConstraintsBuilder<'db> {
|
||||
db: &'db dyn Db,
|
||||
constraint: Constraint<'db>,
|
||||
constraints: NarrowingConstraints<'db>,
|
||||
constraint: ConstraintNode<'db>,
|
||||
is_positive: bool,
|
||||
}
|
||||
|
||||
impl<'db> NarrowingConstraintsBuilder<'db> {
|
||||
fn new(db: &'db dyn Db, constraint: Constraint<'db>) -> Self {
|
||||
fn new(db: &'db dyn Db, constraint: ConstraintNode<'db>, is_positive: bool) -> Self {
|
||||
Self {
|
||||
db,
|
||||
constraint,
|
||||
constraints: NarrowingConstraints::default(),
|
||||
is_positive,
|
||||
}
|
||||
}
|
||||
|
||||
fn finish(mut self) -> NarrowingConstraints<'db> {
|
||||
match self.constraint {
|
||||
Constraint::Expression(expression) => self.evaluate_expression_constraint(expression),
|
||||
Constraint::Pattern(pattern) => self.evaluate_pattern_constraint(pattern),
|
||||
fn finish(mut self) -> Option<NarrowingConstraints<'db>> {
|
||||
let constraints: Option<NarrowingConstraints<'db>> = match self.constraint {
|
||||
ConstraintNode::Expression(expression) => {
|
||||
self.evaluate_expression_constraint(expression, self.is_positive)
|
||||
}
|
||||
ConstraintNode::Pattern(pattern) => self.evaluate_pattern_constraint(pattern),
|
||||
};
|
||||
if let Some(mut constraints) = constraints {
|
||||
constraints.shrink_to_fit();
|
||||
Some(constraints)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
|
||||
self.constraints.shrink_to_fit();
|
||||
self.constraints
|
||||
}
|
||||
|
||||
fn evaluate_expression_constraint(&mut self, expression: Expression<'db>) {
|
||||
match expression.node_ref(self.db).node() {
|
||||
fn evaluate_expression_constraint(
|
||||
&mut self,
|
||||
expression: Expression<'db>,
|
||||
is_positive: bool,
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
let expression_node = expression.node_ref(self.db).node();
|
||||
self.evaluate_expression_node_constraint(expression_node, expression, is_positive)
|
||||
}
|
||||
|
||||
fn evaluate_expression_node_constraint(
|
||||
&mut self,
|
||||
expression_node: &ruff_python_ast::Expr,
|
||||
expression: Expression<'db>,
|
||||
is_positive: bool,
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
match expression_node {
|
||||
ast::Expr::Compare(expr_compare) => {
|
||||
self.add_expr_compare(expr_compare, expression);
|
||||
self.evaluate_expr_compare(expr_compare, expression, is_positive)
|
||||
}
|
||||
ast::Expr::Call(expr_call) => {
|
||||
self.add_expr_call(expr_call, expression);
|
||||
self.evaluate_expr_call(expr_call, expression, is_positive)
|
||||
}
|
||||
_ => {} // TODO other test expression kinds
|
||||
ast::Expr::UnaryOp(unary_op) if unary_op.op == ast::UnaryOp::Not => self
|
||||
.evaluate_expression_node_constraint(&unary_op.operand, expression, !is_positive),
|
||||
ast::Expr::BoolOp(bool_op) => self.evaluate_bool_op(bool_op, expression, is_positive),
|
||||
_ => None, // TODO other test expression kinds
|
||||
}
|
||||
}
|
||||
|
||||
fn evaluate_pattern_constraint(&mut self, pattern: PatternConstraint<'db>) {
|
||||
fn evaluate_pattern_constraint(
|
||||
&mut self,
|
||||
pattern: PatternConstraint<'db>,
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
let subject = pattern.subject(self.db);
|
||||
|
||||
match pattern.pattern(self.db).node() {
|
||||
ast::Pattern::MatchValue(_) => {
|
||||
// TODO
|
||||
None // TODO
|
||||
}
|
||||
ast::Pattern::MatchSingleton(singleton_pattern) => {
|
||||
self.add_match_pattern_singleton(subject, singleton_pattern);
|
||||
self.evaluate_match_pattern_singleton(subject, singleton_pattern)
|
||||
}
|
||||
ast::Pattern::MatchSequence(_) => {
|
||||
// TODO
|
||||
None // TODO
|
||||
}
|
||||
ast::Pattern::MatchMapping(_) => {
|
||||
// TODO
|
||||
None // TODO
|
||||
}
|
||||
ast::Pattern::MatchClass(_) => {
|
||||
// TODO
|
||||
None // TODO
|
||||
}
|
||||
ast::Pattern::MatchStar(_) => {
|
||||
// TODO
|
||||
None // TODO
|
||||
}
|
||||
ast::Pattern::MatchAs(_) => {
|
||||
// TODO
|
||||
None // TODO
|
||||
}
|
||||
ast::Pattern::MatchOr(_) => {
|
||||
// TODO
|
||||
None // TODO
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -160,12 +246,17 @@ impl<'db> NarrowingConstraintsBuilder<'db> {
|
||||
|
||||
fn scope(&self) -> ScopeId<'db> {
|
||||
match self.constraint {
|
||||
Constraint::Expression(expression) => expression.scope(self.db),
|
||||
Constraint::Pattern(pattern) => pattern.scope(self.db),
|
||||
ConstraintNode::Expression(expression) => expression.scope(self.db),
|
||||
ConstraintNode::Pattern(pattern) => pattern.scope(self.db),
|
||||
}
|
||||
}
|
||||
|
||||
fn add_expr_compare(&mut self, expr_compare: &ast::ExprCompare, expression: Expression<'db>) {
|
||||
fn evaluate_expr_compare(
|
||||
&mut self,
|
||||
expr_compare: &ast::ExprCompare,
|
||||
expression: Expression<'db>,
|
||||
is_positive: bool,
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
let ast::ExprCompare {
|
||||
range: _,
|
||||
left,
|
||||
@@ -175,7 +266,14 @@ impl<'db> NarrowingConstraintsBuilder<'db> {
|
||||
if !left.is_name_expr() && comparators.iter().all(|c| !c.is_name_expr()) {
|
||||
// If none of the comparators are name expressions,
|
||||
// we have no symbol to narrow down the type of.
|
||||
return;
|
||||
return None;
|
||||
}
|
||||
if !is_positive && comparators.len() > 1 {
|
||||
// We can't negate a constraint made by a multi-comparator expression, since we can't
|
||||
// know which comparison part is the one being negated.
|
||||
// For example, the negation of `x is 1 is y is 2`, would be `(x is not 1) or (y is not 1) or (y is not 2)`
|
||||
// and that requires cross-symbol constraints, which we don't support yet.
|
||||
return None;
|
||||
}
|
||||
let scope = self.scope();
|
||||
let inference = infer_expression_types(self.db, expression);
|
||||
@@ -183,6 +281,7 @@ impl<'db> NarrowingConstraintsBuilder<'db> {
|
||||
let comparator_tuples = std::iter::once(&**left)
|
||||
.chain(comparators)
|
||||
.tuple_windows::<(&ruff_python_ast::Expr, &ruff_python_ast::Expr)>();
|
||||
let mut constraints = NarrowingConstraints::default();
|
||||
for (op, (left, right)) in std::iter::zip(&**ops, comparator_tuples) {
|
||||
if let ast::Expr::Name(ast::ExprName {
|
||||
range: _,
|
||||
@@ -192,27 +291,28 @@ impl<'db> NarrowingConstraintsBuilder<'db> {
|
||||
{
|
||||
// SAFETY: we should always have a symbol for every Name node.
|
||||
let symbol = self.symbols().symbol_id_by_name(id).unwrap();
|
||||
let comp_ty = inference.expression_ty(right.scoped_ast_id(self.db, scope));
|
||||
match op {
|
||||
let rhs_ty = inference.expression_ty(right.scoped_ast_id(self.db, scope));
|
||||
|
||||
match if is_positive { *op } else { op.negate() } {
|
||||
ast::CmpOp::IsNot => {
|
||||
if comp_ty.is_singleton() {
|
||||
if rhs_ty.is_singleton(self.db) {
|
||||
let ty = IntersectionBuilder::new(self.db)
|
||||
.add_negative(comp_ty)
|
||||
.add_negative(rhs_ty)
|
||||
.build();
|
||||
self.constraints.insert(symbol, ty);
|
||||
constraints.insert(symbol, ty);
|
||||
} else {
|
||||
// Non-singletons cannot be safely narrowed using `is not`
|
||||
}
|
||||
}
|
||||
ast::CmpOp::Is => {
|
||||
self.constraints.insert(symbol, comp_ty);
|
||||
constraints.insert(symbol, rhs_ty);
|
||||
}
|
||||
ast::CmpOp::NotEq => {
|
||||
if comp_ty.is_single_valued(self.db) {
|
||||
if rhs_ty.is_single_valued(self.db) {
|
||||
let ty = IntersectionBuilder::new(self.db)
|
||||
.add_negative(comp_ty)
|
||||
.add_negative(rhs_ty)
|
||||
.build();
|
||||
self.constraints.insert(symbol, ty);
|
||||
constraints.insert(symbol, ty);
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
@@ -221,50 +321,137 @@ impl<'db> NarrowingConstraintsBuilder<'db> {
|
||||
}
|
||||
}
|
||||
}
|
||||
Some(constraints)
|
||||
}
|
||||
|
||||
fn add_expr_call(&mut self, expr_call: &ast::ExprCall, expression: Expression<'db>) {
|
||||
fn evaluate_expr_call(
|
||||
&mut self,
|
||||
expr_call: &ast::ExprCall,
|
||||
expression: Expression<'db>,
|
||||
is_positive: bool,
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
let scope = self.scope();
|
||||
let inference = infer_expression_types(self.db, expression);
|
||||
|
||||
if let Some(func_type) = inference
|
||||
// TODO: add support for PEP 604 union types on the right hand side of `isinstance`
|
||||
// and `issubclass`, for example `isinstance(x, str | (int | float))`.
|
||||
match inference
|
||||
.expression_ty(expr_call.func.scoped_ast_id(self.db, scope))
|
||||
.into_function_literal_type()
|
||||
.into_function_literal()
|
||||
.and_then(|f| f.known(self.db))
|
||||
.and_then(KnownFunction::constraint_function)
|
||||
{
|
||||
if func_type.is_known(self.db, KnownFunction::IsInstance)
|
||||
&& expr_call.arguments.keywords.is_empty()
|
||||
{
|
||||
if let [ast::Expr::Name(ast::ExprName { id, .. }), rhs] = &*expr_call.arguments.args
|
||||
Some(function) if expr_call.arguments.keywords.is_empty() => {
|
||||
if let [ast::Expr::Name(ast::ExprName { id, .. }), class_info] =
|
||||
&*expr_call.arguments.args
|
||||
{
|
||||
let symbol = self.symbols().symbol_id_by_name(id).unwrap();
|
||||
|
||||
let rhs_type = inference.expression_ty(rhs.scoped_ast_id(self.db, scope));
|
||||
let class_info_ty =
|
||||
inference.expression_ty(class_info.scoped_ast_id(self.db, scope));
|
||||
|
||||
// TODO: add support for PEP 604 union types on the right hand side:
|
||||
// isinstance(x, str | (int | float))
|
||||
if let Some(constraint) = generate_isinstance_constraint(self.db, &rhs_type) {
|
||||
self.constraints.insert(symbol, constraint);
|
||||
}
|
||||
let to_constraint = match function {
|
||||
KnownConstraintFunction::IsInstance => {
|
||||
|class_literal: ClassLiteralType<'db>| {
|
||||
Type::Instance(InstanceType {
|
||||
class: class_literal.class,
|
||||
})
|
||||
}
|
||||
}
|
||||
KnownConstraintFunction::IsSubclass => {
|
||||
|class_literal: ClassLiteralType<'db>| {
|
||||
Type::SubclassOf(class_literal.to_subclass_of_type())
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
generate_classinfo_constraint(self.db, &class_info_ty, to_constraint).map(
|
||||
|constraint| {
|
||||
let mut constraints = NarrowingConstraints::default();
|
||||
constraints.insert(symbol, constraint.negate_if(self.db, !is_positive));
|
||||
constraints
|
||||
},
|
||||
)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
fn add_match_pattern_singleton(
|
||||
fn evaluate_match_pattern_singleton(
|
||||
&mut self,
|
||||
subject: &ast::Expr,
|
||||
pattern: &ast::PatternMatchSingleton,
|
||||
) {
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
if let Some(ast::ExprName { id, .. }) = subject.as_name_expr() {
|
||||
// SAFETY: we should always have a symbol for every Name node.
|
||||
let symbol = self.symbols().symbol_id_by_name(id).unwrap();
|
||||
|
||||
let ty = match pattern.value {
|
||||
ast::Singleton::None => Type::None,
|
||||
ast::Singleton::None => Type::none(self.db),
|
||||
ast::Singleton::True => Type::BooleanLiteral(true),
|
||||
ast::Singleton::False => Type::BooleanLiteral(false),
|
||||
};
|
||||
self.constraints.insert(symbol, ty);
|
||||
let mut constraints = NarrowingConstraints::default();
|
||||
constraints.insert(symbol, ty);
|
||||
Some(constraints)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
fn evaluate_bool_op(
|
||||
&mut self,
|
||||
expr_bool_op: &ExprBoolOp,
|
||||
expression: Expression<'db>,
|
||||
is_positive: bool,
|
||||
) -> Option<NarrowingConstraints<'db>> {
|
||||
let inference = infer_expression_types(self.db, expression);
|
||||
let scope = self.scope();
|
||||
let mut sub_constraints = expr_bool_op
|
||||
.values
|
||||
.iter()
|
||||
// filter our arms with statically known truthiness
|
||||
.filter(|expr| {
|
||||
inference
|
||||
.expression_ty(expr.scoped_ast_id(self.db, scope))
|
||||
.bool(self.db)
|
||||
!= match expr_bool_op.op {
|
||||
BoolOp::And => Truthiness::AlwaysTrue,
|
||||
BoolOp::Or => Truthiness::AlwaysFalse,
|
||||
}
|
||||
})
|
||||
.map(|sub_expr| {
|
||||
self.evaluate_expression_node_constraint(sub_expr, expression, is_positive)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
match (expr_bool_op.op, is_positive) {
|
||||
(BoolOp::And, true) | (BoolOp::Or, false) => {
|
||||
let mut aggregation: Option<NarrowingConstraints> = None;
|
||||
for sub_constraint in sub_constraints.into_iter().flatten() {
|
||||
if let Some(ref mut some_aggregation) = aggregation {
|
||||
merge_constraints_and(some_aggregation, sub_constraint, self.db);
|
||||
} else {
|
||||
aggregation = Some(sub_constraint);
|
||||
}
|
||||
}
|
||||
aggregation
|
||||
}
|
||||
(BoolOp::Or, true) | (BoolOp::And, false) => {
|
||||
let (first, rest) = sub_constraints.split_first_mut()?;
|
||||
if let Some(ref mut first) = first {
|
||||
for rest_constraint in rest {
|
||||
if let Some(rest_constraint) = rest_constraint {
|
||||
merge_constraints_or(first, rest_constraint, self.db);
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
first.clone()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
143
crates/red_knot_python_semantic/src/types/unpacker.rs
Normal file
143
crates/red_knot_python_semantic/src/types/unpacker.rs
Normal file
@@ -0,0 +1,143 @@
|
||||
use std::borrow::Cow;
|
||||
|
||||
use ruff_db::files::File;
|
||||
use ruff_python_ast::{self as ast, AnyNodeRef};
|
||||
use rustc_hash::FxHashMap;
|
||||
|
||||
use crate::semantic_index::ast_ids::{HasScopedAstId, ScopedExpressionId};
|
||||
use crate::semantic_index::symbol::ScopeId;
|
||||
use crate::types::{TupleType, Type, TypeCheckDiagnostics, TypeCheckDiagnosticsBuilder};
|
||||
use crate::Db;
|
||||
|
||||
/// Unpacks the value expression type to their respective targets.
|
||||
pub(crate) struct Unpacker<'db> {
|
||||
db: &'db dyn Db,
|
||||
targets: FxHashMap<ScopedExpressionId, Type<'db>>,
|
||||
diagnostics: TypeCheckDiagnosticsBuilder<'db>,
|
||||
}
|
||||
|
||||
impl<'db> Unpacker<'db> {
|
||||
pub(crate) fn new(db: &'db dyn Db, file: File) -> Self {
|
||||
Self {
|
||||
db,
|
||||
targets: FxHashMap::default(),
|
||||
diagnostics: TypeCheckDiagnosticsBuilder::new(db, file),
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn unpack(&mut self, target: &ast::Expr, value_ty: Type<'db>, scope: ScopeId<'db>) {
|
||||
match target {
|
||||
ast::Expr::Name(target_name) => {
|
||||
self.targets
|
||||
.insert(target_name.scoped_ast_id(self.db, scope), value_ty);
|
||||
}
|
||||
ast::Expr::Starred(ast::ExprStarred { value, .. }) => {
|
||||
self.unpack(value, value_ty, scope);
|
||||
}
|
||||
ast::Expr::List(ast::ExprList { elts, .. })
|
||||
| ast::Expr::Tuple(ast::ExprTuple { elts, .. }) => match value_ty {
|
||||
Type::Tuple(tuple_ty) => {
|
||||
let starred_index = elts.iter().position(ast::Expr::is_starred_expr);
|
||||
|
||||
let element_types = if let Some(starred_index) = starred_index {
|
||||
if tuple_ty.len(self.db) >= elts.len() - 1 {
|
||||
let mut element_types = Vec::with_capacity(elts.len());
|
||||
element_types.extend_from_slice(
|
||||
// SAFETY: Safe because of the length check above.
|
||||
&tuple_ty.elements(self.db)[..starred_index],
|
||||
);
|
||||
|
||||
// E.g., in `(a, *b, c, d) = ...`, the index of starred element `b`
|
||||
// is 1 and the remaining elements after that are 2.
|
||||
let remaining = elts.len() - (starred_index + 1);
|
||||
// This index represents the type of the last element that belongs
|
||||
// to the starred expression, in an exclusive manner.
|
||||
let starred_end_index = tuple_ty.len(self.db) - remaining;
|
||||
// SAFETY: Safe because of the length check above.
|
||||
let _starred_element_types =
|
||||
&tuple_ty.elements(self.db)[starred_index..starred_end_index];
|
||||
// TODO: Combine the types into a list type. If the
|
||||
// starred_element_types is empty, then it should be `List[Any]`.
|
||||
// combine_types(starred_element_types);
|
||||
element_types.push(Type::Todo);
|
||||
|
||||
element_types.extend_from_slice(
|
||||
// SAFETY: Safe because of the length check above.
|
||||
&tuple_ty.elements(self.db)[starred_end_index..],
|
||||
);
|
||||
Cow::Owned(element_types)
|
||||
} else {
|
||||
let mut element_types = tuple_ty.elements(self.db).to_vec();
|
||||
// Subtract 1 to insert the starred expression type at the correct
|
||||
// index.
|
||||
element_types.resize(elts.len() - 1, Type::Unknown);
|
||||
// TODO: This should be `list[Unknown]`
|
||||
element_types.insert(starred_index, Type::Todo);
|
||||
Cow::Owned(element_types)
|
||||
}
|
||||
} else {
|
||||
Cow::Borrowed(tuple_ty.elements(self.db).as_ref())
|
||||
};
|
||||
|
||||
for (index, element) in elts.iter().enumerate() {
|
||||
self.unpack(
|
||||
element,
|
||||
element_types.get(index).copied().unwrap_or(Type::Unknown),
|
||||
scope,
|
||||
);
|
||||
}
|
||||
}
|
||||
Type::StringLiteral(string_literal_ty) => {
|
||||
// Deconstruct the string literal to delegate the inference back to the
|
||||
// tuple type for correct handling of starred expressions. We could go
|
||||
// further and deconstruct to an array of `StringLiteral` with each
|
||||
// individual character, instead of just an array of `LiteralString`, but
|
||||
// there would be a cost and it's not clear that it's worth it.
|
||||
let value_ty = Type::Tuple(TupleType::new(
|
||||
self.db,
|
||||
vec![Type::LiteralString; string_literal_ty.len(self.db)]
|
||||
.into_boxed_slice(),
|
||||
));
|
||||
self.unpack(target, value_ty, scope);
|
||||
}
|
||||
_ => {
|
||||
let value_ty = if value_ty.is_literal_string() {
|
||||
Type::LiteralString
|
||||
} else {
|
||||
value_ty
|
||||
.iterate(self.db)
|
||||
.unwrap_with_diagnostic(AnyNodeRef::from(target), &mut self.diagnostics)
|
||||
};
|
||||
for element in elts {
|
||||
self.unpack(element, value_ty, scope);
|
||||
}
|
||||
}
|
||||
},
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn finish(mut self) -> UnpackResult<'db> {
|
||||
self.targets.shrink_to_fit();
|
||||
UnpackResult {
|
||||
diagnostics: self.diagnostics.finish(),
|
||||
targets: self.targets,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Default, PartialEq, Eq)]
|
||||
pub(crate) struct UnpackResult<'db> {
|
||||
targets: FxHashMap<ScopedExpressionId, Type<'db>>,
|
||||
diagnostics: TypeCheckDiagnostics,
|
||||
}
|
||||
|
||||
impl<'db> UnpackResult<'db> {
|
||||
pub(crate) fn get(&self, expr_id: ScopedExpressionId) -> Option<Type<'db>> {
|
||||
self.targets.get(&expr_id).copied()
|
||||
}
|
||||
|
||||
pub(crate) fn diagnostics(&self) -> &TypeCheckDiagnostics {
|
||||
&self.diagnostics
|
||||
}
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user