Compare commits

..

1 Commits

Author SHA1 Message Date
Jonathan Bell
0b6f8db41a cdc_uart: support databits, stopbits and parity setup 2023-09-18 16:17:29 +01:00
17 changed files with 322 additions and 553 deletions

View File

@@ -5,12 +5,11 @@ include(pico_sdk_import.cmake)
set(FREERTOS_KERNEL_PATH ${CMAKE_CURRENT_LIST_DIR}/freertos)
include(FreeRTOS_Kernel_import.cmake)
project(debugprobe)
project(picoprobe)
pico_sdk_init()
add_executable(debugprobe
src/probe_config.c
add_executable(picoprobe
src/led.c
src/main.c
src/usb_descriptors.c
@@ -21,7 +20,7 @@ add_executable(debugprobe
src/tusb_edpt_handler.c
)
target_sources(debugprobe PRIVATE
target_sources(picoprobe PRIVATE
CMSIS_5/CMSIS/DAP/Firmware/Source/DAP.c
CMSIS_5/CMSIS/DAP/Firmware/Source/JTAG_DP.c
CMSIS_5/CMSIS/DAP/Firmware/Source/DAP_vendor.c
@@ -29,35 +28,35 @@ target_sources(debugprobe PRIVATE
#CMSIS_5/CMSIS/DAP/Firmware/Source/SW_DP.c
)
target_include_directories(debugprobe PRIVATE
target_include_directories(picoprobe PRIVATE
CMSIS_5/CMSIS/DAP/Firmware/Include/
CMSIS_5/CMSIS/Core/Include/
include/
)
target_compile_options(debugprobe PRIVATE -Wall)
target_compile_options(picoprobe PRIVATE -Wall)
pico_generate_pio_header(debugprobe ${CMAKE_CURRENT_LIST_DIR}/src/probe.pio)
pico_generate_pio_header(debugprobe ${CMAKE_CURRENT_LIST_DIR}/src/probe_oen.pio)
pico_generate_pio_header(picoprobe ${CMAKE_CURRENT_LIST_DIR}/src/probe.pio)
pico_generate_pio_header(picoprobe ${CMAKE_CURRENT_LIST_DIR}/src/probe_oen.pio)
target_include_directories(debugprobe PRIVATE src)
target_include_directories(picoprobe PRIVATE src)
target_compile_definitions (debugprobe PRIVATE
target_compile_definitions (picoprobe PRIVATE
PICO_RP2040_USB_DEVICE_ENUMERATION_FIX=1
)
option (DEBUG_ON_PICO "Compile firmware for the Pico instead of Debug Probe" OFF)
if (DEBUG_ON_PICO)
target_compile_definitions (debugprobe PRIVATE
DEBUG_ON_PICO=1
option (DEBUGPROBE "compile for the debugprobe" OFF)
if (DEBUGPROBE)
target_compile_definitions (picoprobe PRIVATE
DEBUGPROBE=1
)
set_target_properties(debugprobe PROPERTIES
OUTPUT_NAME "debugprobe_on_pico"
set_target_properties(picoprobe PROPERTIES
OUTPUT_NAME "debugprobe"
)
endif ()
target_link_libraries(debugprobe PRIVATE
target_link_libraries(picoprobe PRIVATE
pico_multicore
pico_stdlib
pico_unique_id
@@ -68,6 +67,6 @@ target_link_libraries(debugprobe PRIVATE
FreeRTOS-Kernel-Heap1
)
pico_set_binary_type(debugprobe copy_to_ram)
pico_set_binary_type(picoprobe copy_to_ram)
pico_add_extra_outputs(debugprobe)
pico_add_extra_outputs(picoprobe)

View File

@@ -1,53 +1,41 @@
# Debugprobe
Firmware source for the Raspberry Pi Debug Probe SWD/UART accessory. Can also be run on a Raspberry Pi Pico.
[Raspberry Pi Debug Probe product page](https://www.raspberrypi.com/products/debug-probe/)
[Raspberry Pi Pico product page](https://www.raspberrypi.com/products/raspberry-pi-pico/)
# Picoprobe
Picoprobe allows a Pico / RP2040 to be used as USB -> SWD and UART bridge. This means it can be used as a debugger and serial console for another Pico.
# Documentation
Debug Probe documentation can be found in the [Pico Getting Started Guide](https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf). See "Appendix A: Using the Debug Probe".
Picoprobe documentation can be found in the [Pico Getting Started Guide](https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf). See "Appendix A: Using Picoprobe".
# Hacking
For the purpose of making changes or studying of the code, you may want to compile the code yourself.
For the purpose of making changes or studying of the code, you may want to compile the code yourself.
First, clone the repository:
```
git clone https://github.com/raspberrypi/debugprobe
cd debugprobe
```
Initialize and update the submodules:
To compile this project firstly initialize and update the submodules:
```
git submodule update --init
```
Then create and switch to the build directory:
then create and switch to the build directory:
```
mkdir build
cd build
```
If your environment doesn't contain `PICO_SDK_PATH`, then either add it to your environment variables with `export PICO_SDK_PATH=/path/to/sdk` or add `PICO_SDK_PATH=/path/to/sdk` to the arguments to CMake below.
Run cmake and build the code:
then run cmake and build the code:
```
cmake ..
make
```
Done! You should now have a `debugprobe.uf2` that you can upload to your Debug Probe via the UF2 bootloader.
Done! You should now have a `picoprobe.uf2` that you can upload to your Pico in the normal way.
If you want to create the version that runs on the Pico, then you need to invoke `cmake` in the sequence above with the `DEBUG_ON_PICO=ON` option:
If you want to create the version that runs on the Raspberry Pi Debug Probe, then you need to invoke `cmake` in the sequence above with the `DEBUGPROBE=ON` option:
```
cmake -DDEBUG_ON_PICO=ON ..
cmake -DDEBUGPROBE=ON ..
```
This will build with the configuration for the Pico and call the output program `debugprobe_on_pico.uf2`, as opposed to `debugprobe.uf2` for the accessory hardware.
This will build with the configuration for the Debug Probe and call the output program `debugprobe.uf2`, as opposed to `picoprobe.uf2` for the vanilla version.
Note that if you first ran through the whole sequence to compile for the Debug Probe, then you don't need to start back at the top. You can just go back to the `cmake` step and start from there.
Note that if you first ran through the whole sequence to compile for the Pico, then you don't need to start back at the top. You can just go back to the `cmake` step and start from there.
# TODO
- TinyUSB's vendor interface is FIFO-based and not packet-based. Using raw tx/rx callbacks is preferable as this stops DAP command batches from being concatenated, which confused openOCD.
- Instead of polling, move the DAP thread to an asynchronously started/stopped one-shot operation to reduce CPU wakeups
- AutoBaud selection, as PIO is a capable frequency counter
- Possibly include RTT support

View File

@@ -47,12 +47,12 @@ This information includes:
#include <hardware/gpio.h>
#include "cmsis_compiler.h"
#include "probe_config.h"
#include "picoprobe_config.h"
#include "probe.h"
/// Processor Clock of the Cortex-M MCU used in the Debug Unit.
/// This value is used to calculate the SWD/JTAG clock speed.
/* Debugprobe actually uses kHz rather than Hz, so just lie about it here */
/* Picoprobe actually uses kHz rather than Hz, so just lie about it here */
#define CPU_CLOCK 125000000U ///< Specifies the CPU Clock in Hz.
/// Number of processor cycles for I/O Port write operations.
@@ -502,8 +502,8 @@ It is recommended to provide the following LEDs for status indication:
- 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit.
*/
__STATIC_INLINE void LED_CONNECTED_OUT (uint32_t bit) {
#ifdef PROBE_DAP_CONNECTED_LED
gpio_put(PROBE_DAP_CONNECTED_LED, bit);
#ifdef PICOPROBE_DAP_CONNECTED_LED
gpio_put(PICOPROBE_DAP_CONNECTED_LED, bit);
#endif
}
@@ -513,8 +513,8 @@ __STATIC_INLINE void LED_CONNECTED_OUT (uint32_t bit) {
- 0: Target Running LED OFF: program execution in target stopped.
*/
__STATIC_INLINE void LED_RUNNING_OUT (uint32_t bit) {
#ifdef PROBE_DAP_RUNNING_LED
gpio_put(PROBE_DAP_RUNNING_LED, bit);
#ifdef PICOPROBE_DAP_RUNNING_LED
gpio_put(PICOPROBE_DAP_RUNNING_LED, bit);
#endif
}

View File

@@ -23,8 +23,8 @@
*
*/
#ifndef BOARD_DEBUG_PROBE_H_
#define BOARD_DEBUG_PROBE_H_
#ifndef BOARD_DEBUGPROBE_H_
#define BOARD_DEBUGPROBE_H_
#define PROBE_IO_SWDI
#define PROBE_CDC_UART
@@ -39,16 +39,16 @@
#define PROBE_PIN_SWDIO (PROBE_PIN_OFFSET + 2)
// UART config
#define PROBE_UART_TX 4
#define PROBE_UART_RX 5
#define PROBE_UART_INTERFACE uart1
#define PROBE_UART_BAUDRATE 115200
#define PICOPROBE_UART_TX 4
#define PICOPROBE_UART_RX 5
#define PICOPROBE_UART_INTERFACE uart1
#define PICOPROBE_UART_BAUDRATE 115200
#define PROBE_USB_CONNECTED_LED 2
#define PROBE_DAP_CONNECTED_LED 15
#define PROBE_DAP_RUNNING_LED 16
#define PROBE_UART_RX_LED 7
#define PROBE_UART_TX_LED 8
#define PICOPROBE_USB_CONNECTED_LED 2
#define PICOPROBE_DAP_CONNECTED_LED 15
#define PICOPROBE_DAP_RUNNING_LED 16
#define PICOPROBE_UART_RX_LED 7
#define PICOPROBE_UART_TX_LED 8
#define PROBE_PRODUCT_STRING "Debug Probe (CMSIS-DAP)"

View File

@@ -37,10 +37,6 @@
/* Include CDC interface to bridge to target UART. Omit if not used. */
#define PROBE_CDC_UART
/* Board implements hardware flow control for UART RTS/CTS instead of ACM control */
#define PROBE_UART_HWFC
/* Target reset GPIO (active-low). Omit if not used.*/
#define PROBE_PIN_RESET 1
@@ -60,7 +56,7 @@
#endif
/* PIO config for PROBE_IO_OEN - note that SWDIOEN and SWCLK are both side_set signals, so must be consecutive. */
#if defined(PROBE_IO_OEN)
#if defined(PROBE_IO_SWDIOEN)
#define PROBE_PIN_SWDIOEN (PROBE_PIN_OFFSET + 0)
#define PROBE_PIN_SWCLK (PROBE_PIN_OFFSET + 1)
#define PROBE_PIN_SWDIO (PROBE_PIN_OFFSET + 2)
@@ -68,29 +64,18 @@
#endif
#if defined(PROBE_CDC_UART)
#define PROBE_UART_TX 4
#define PROBE_UART_RX 5
#define PROBE_UART_INTERFACE uart1
#define PROBE_UART_BAUDRATE 115200
#if defined(PROBE_UART_HWFC)
/* Hardware flow control - see 1.4.3 in the RP2040 datasheet for valid pin settings */
#define PROBE_UART_CTS 6
#define PROBE_UART_RTS 7
#else
/* Software flow control - RTS and DTR can be omitted if not used */
#define PROBE_UART_RTS 9
#endif
#define PROBE_UART_DTR 10
#define PICOPROBE_UART_TX 4
#define PICOPROBE_UART_RX 5
#define PICOPROBE_UART_INTERFACE uart1
#define PICOPROBE_UART_BAUDRATE 115200
#endif
/* LED config - some or all of these can be omitted if not used */
#define PROBE_USB_CONNECTED_LED 2
#define PROBE_DAP_CONNECTED_LED 15
#define PROBE_DAP_RUNNING_LED 16
#define PROBE_UART_RX_LED 7
#define PROBE_UART_TX_LED 8
#define PICOPROBE_USB_CONNECTED_LED 2
#define PICOPROBE_DAP_CONNECTED_LED 15
#define PICOPROBE_DAP_RUNNING_LED 16
#define PICOPROBE_UART_RX_LED 7
#define PICOPROBE_UART_TX_LED 8
#define PROBE_PRODUCT_STRING "Example Debug Probe"

View File

@@ -40,13 +40,13 @@
#endif
// UART config
#define PROBE_UART_TX 4
#define PROBE_UART_RX 5
#define PROBE_UART_INTERFACE uart1
#define PROBE_UART_BAUDRATE 115200
#define PICOPROBE_UART_TX 4
#define PICOPROBE_UART_RX 5
#define PICOPROBE_UART_INTERFACE uart1
#define PICOPROBE_UART_BAUDRATE 115200
#define PROBE_USB_CONNECTED_LED 25
#define PICOPROBE_USB_CONNECTED_LED 25
#define PROBE_PRODUCT_STRING "Debugprobe on Pico (CMSIS-DAP)"
#define PROBE_PRODUCT_STRING "Picoprobe (CMSIS-DAP)"
#endif
#endif

View File

@@ -29,12 +29,10 @@
#include "tusb.h"
#include "probe_config.h"
#include "picoprobe_config.h"
TaskHandle_t uart_taskhandle;
TickType_t last_wake, interval = 100;
volatile TickType_t break_expiry;
volatile bool timed_break;
/* Max 1 FIFO worth of data */
static uint8_t tx_buf[32];
@@ -43,55 +41,31 @@ static uint8_t rx_buf[32];
#define DEBOUNCE_MS 40
static uint debounce_ticks = 5;
#ifdef PROBE_UART_TX_LED
static volatile uint tx_led_debounce;
#ifdef PICOPROBE_UART_TX_LED
static uint tx_led_debounce;
#endif
#ifdef PROBE_UART_RX_LED
#ifdef PICOPROBE_UART_RX_LED
static uint rx_led_debounce;
#endif
void cdc_uart_init(void) {
gpio_set_function(PROBE_UART_TX, GPIO_FUNC_UART);
gpio_set_function(PROBE_UART_RX, GPIO_FUNC_UART);
gpio_set_pulls(PROBE_UART_TX, 1, 0);
gpio_set_pulls(PROBE_UART_RX, 1, 0);
uart_init(PROBE_UART_INTERFACE, PROBE_UART_BAUDRATE);
#ifdef PROBE_UART_HWFC
/* HWFC implies that hardware flow control is implemented and the
* UART operates in "full-duplex" mode (See USB CDC PSTN120 6.3.12).
* Default to pulling in the active direction, so an unconnected CTS
* behaves the same as if CTS were not enabled. */
gpio_set_pulls(PROBE_UART_CTS, 0, 1);
gpio_set_function(PROBE_UART_RTS, GPIO_FUNC_UART);
gpio_set_function(PROBE_UART_CTS, GPIO_FUNC_UART);
uart_set_hw_flow(PROBE_UART_INTERFACE, true, true);
#else
#ifdef PROBE_UART_RTS
gpio_init(PROBE_UART_RTS);
gpio_set_dir(PROBE_UART_RTS, GPIO_OUT);
gpio_put(PROBE_UART_RTS, 1);
#endif
#endif
#ifdef PROBE_UART_DTR
gpio_init(PROBE_UART_DTR);
gpio_set_dir(PROBE_UART_DTR, GPIO_OUT);
gpio_put(PROBE_UART_DTR, 1);
#endif
gpio_set_function(PICOPROBE_UART_TX, GPIO_FUNC_UART);
gpio_set_function(PICOPROBE_UART_RX, GPIO_FUNC_UART);
gpio_set_pulls(PICOPROBE_UART_TX, 1, 0);
gpio_set_pulls(PICOPROBE_UART_RX, 1, 0);
uart_init(PICOPROBE_UART_INTERFACE, PICOPROBE_UART_BAUDRATE);
}
bool cdc_task(void)
void cdc_task(void)
{
static int was_connected = 0;
static uint cdc_tx_oe = 0;
uint rx_len = 0;
bool keep_alive = false;
// Consume uart fifo regardless even if not connected
while(uart_is_readable(PROBE_UART_INTERFACE) && (rx_len < sizeof(rx_buf))) {
rx_buf[rx_len++] = uart_getc(PROBE_UART_INTERFACE);
while(uart_is_readable(PICOPROBE_UART_INTERFACE) && (rx_len < sizeof(rx_buf))) {
rx_buf[rx_len++] = uart_getc(PICOPROBE_UART_INTERFACE);
}
if (tud_cdc_connected()) {
@@ -100,8 +74,8 @@ bool cdc_task(void)
/* Implicit overflow if we don't write all the bytes to the host.
* Also throw away bytes if we can't write... */
if (rx_len) {
#ifdef PROBE_UART_RX_LED
gpio_put(PROBE_UART_RX_LED, 1);
#ifdef PICOPROBE_UART_RX_LED
gpio_put(PICOPROBE_UART_RX_LED, 1);
rx_led_debounce = debounce_ticks;
#endif
written = MIN(tud_cdc_write_available(), rx_len);
@@ -113,11 +87,11 @@ bool cdc_task(void)
tud_cdc_write_flush();
}
} else {
#ifdef PROBE_UART_RX_LED
#ifdef PICOPROBE_UART_RX_LED
if (rx_led_debounce)
rx_led_debounce--;
else
gpio_put(PROBE_UART_RX_LED, 0);
gpio_put(PICOPROBE_UART_RX_LED, 0);
#endif
}
@@ -125,60 +99,39 @@ bool cdc_task(void)
size_t watermark = MIN(tud_cdc_available(), sizeof(tx_buf));
if (watermark > 0) {
size_t tx_len;
#ifdef PROBE_UART_TX_LED
gpio_put(PROBE_UART_TX_LED, 1);
#ifdef PICOPROBE_UART_TX_LED
gpio_put(PICOPROBE_UART_TX_LED, 1);
tx_led_debounce = debounce_ticks;
#endif
/* Batch up to half a FIFO of data - don't clog up on RX */
watermark = MIN(watermark, 16);
tx_len = tud_cdc_read(tx_buf, watermark);
uart_write_blocking(PROBE_UART_INTERFACE, tx_buf, tx_len);
uart_write_blocking(PICOPROBE_UART_INTERFACE, tx_buf, tx_len);
} else {
#ifdef PROBE_UART_TX_LED
#ifdef PICOPROBE_UART_TX_LED
if (tx_led_debounce)
tx_led_debounce--;
else
gpio_put(PROBE_UART_TX_LED, 0);
gpio_put(PICOPROBE_UART_TX_LED, 0);
#endif
}
/* Pending break handling */
if (timed_break) {
if (((int)break_expiry - (int)xTaskGetTickCount()) < 0) {
timed_break = false;
uart_set_break(PROBE_UART_INTERFACE, false);
#ifdef PROBE_UART_TX_LED
tx_led_debounce = 0;
#endif
} else {
keep_alive = true;
}
}
} else if (was_connected) {
tud_cdc_write_clear();
uart_set_break(PROBE_UART_INTERFACE, false);
timed_break = false;
was_connected = 0;
#ifdef PROBE_UART_TX_LED
tx_led_debounce = 0;
#endif
cdc_tx_oe = 0;
}
return keep_alive;
}
void cdc_thread(void *ptr)
{
BaseType_t delayed;
last_wake = xTaskGetTickCount();
bool keep_alive;
/* Threaded with a polling interval that scales according to linerate */
while (1) {
keep_alive = cdc_task();
if (!keep_alive) {
delayed = xTaskDelayUntil(&last_wake, interval);
if (delayed == pdFALSE)
last_wake = xTaskGetTickCount();
}
cdc_task();
delayed = xTaskDelayUntil(&last_wake, interval);
if (delayed == pdFALSE)
last_wake = xTaskGetTickCount();
}
}
@@ -194,12 +147,12 @@ void tud_cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* line_coding)
vTaskSuspend(uart_taskhandle);
interval = MAX(1, micros / ((1000 * 1000) / configTICK_RATE_HZ));
debounce_ticks = MAX(1, configTICK_RATE_HZ / (interval * DEBOUNCE_MS));
probe_info("New baud rate %ld micros %ld interval %lu\n",
picoprobe_info("New baud rate %ld micros %ld interval %lu\n",
line_coding->bit_rate, micros, interval);
uart_deinit(PROBE_UART_INTERFACE);
uart_deinit(PICOPROBE_UART_INTERFACE);
tud_cdc_write_clear();
tud_cdc_read_flush();
uart_init(PROBE_UART_INTERFACE, line_coding->bit_rate);
uart_init(PICOPROBE_UART_INTERFACE, line_coding->bit_rate);
switch (line_coding->parity) {
case CDC_LINE_CODING_PARITY_ODD:
@@ -209,7 +162,7 @@ void tud_cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* line_coding)
parity = UART_PARITY_EVEN;
break;
default:
probe_info("invalid parity setting %u\n", line_coding->parity);
picoprobe_info("invalid parity setting %u\n", line_coding->parity);
/* fallthrough */
case CDC_LINE_CODING_PARITY_NONE:
parity = UART_PARITY_NONE;
@@ -224,7 +177,7 @@ void tud_cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* line_coding)
data_bits = line_coding->data_bits;
break;
default:
probe_info("invalid data bits setting: %u\n", line_coding->data_bits);
picoprobe_info("invalid data bits setting: %u\n", line_coding->data_bits);
data_bits = 8;
break;
}
@@ -237,67 +190,31 @@ void tud_cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* line_coding)
stop_bits = 2;
break;
default:
probe_info("invalid stop bits setting: %u\n", line_coding->stop_bits);
picoprobe_info("invalid stop bits setting: %u\n", line_coding->stop_bits);
/* fallthrough */
case CDC_LINE_CONDING_STOP_BITS_1:
stop_bits = 1;
break;
}
uart_set_format(PROBE_UART_INTERFACE, data_bits, stop_bits, parity);
uart_set_format(PICOPROBE_UART_INTERFACE, data_bits, stop_bits, parity);
vTaskResume(uart_taskhandle);
}
void tud_cdc_line_state_cb(uint8_t itf, bool dtr, bool rts)
{
#ifdef PROBE_UART_RTS
gpio_put(PROBE_UART_RTS, !rts);
#endif
#ifdef PROBE_UART_DTR
gpio_put(PROBE_UART_DTR, !dtr);
#endif
/* CDC drivers use linestate as a bodge to activate/deactivate the interface.
* Resume our UART polling on activate, stop on deactivate */
if (!dtr && !rts) {
vTaskSuspend(uart_taskhandle);
#ifdef PROBE_UART_RX_LED
gpio_put(PROBE_UART_RX_LED, 0);
#ifdef PICOPROBE_UART_RX_LED
gpio_put(PICOPROBE_UART_RX_LED, 0);
rx_led_debounce = 0;
#endif
#ifdef PROBE_UART_TX_LED
gpio_put(PROBE_UART_TX_LED, 0);
#ifdef PICOPROBE_UART_RX_LED
gpio_put(PICOPROBE_UART_TX_LED, 0);
tx_led_debounce = 0;
#endif
} else
vTaskResume(uart_taskhandle);
}
void tud_cdc_send_break_cb(uint8_t itf, uint16_t wValue) {
switch(wValue) {
case 0:
uart_set_break(PROBE_UART_INTERFACE, false);
timed_break = false;
#ifdef PROBE_UART_TX_LED
tx_led_debounce = 0;
#endif
break;
case 0xffff:
uart_set_break(PROBE_UART_INTERFACE, true);
timed_break = false;
#ifdef PROBE_UART_TX_LED
gpio_put(PROBE_UART_TX_LED, 1);
tx_led_debounce = 1 << 30;
#endif
break;
default:
uart_set_break(PROBE_UART_INTERFACE, true);
timed_break = true;
#ifdef PROBE_UART_TX_LED
gpio_put(PROBE_UART_TX_LED, 1);
tx_led_debounce = 1 << 30;
#endif
break_expiry = xTaskGetTickCount() + (wValue * (configTICK_RATE_HZ / 1000));
break;
}
}

View File

@@ -28,7 +28,7 @@
void cdc_thread(void *ptr);
void cdc_uart_init(void);
bool cdc_task(void);
void cdc_task(void);
extern TaskHandle_t uart_taskhandle;

View File

@@ -26,27 +26,27 @@
#include <pico/stdlib.h>
#include <stdint.h>
#include "probe_config.h"
#include "picoprobe_config.h"
void led_init(void) {
#ifdef PROBE_USB_CONNECTED_LED
gpio_init(PROBE_USB_CONNECTED_LED);
gpio_set_dir(PROBE_USB_CONNECTED_LED, GPIO_OUT);
#ifdef PICOPROBE_USB_CONNECTED_LED
gpio_init(PICOPROBE_USB_CONNECTED_LED);
gpio_set_dir(PICOPROBE_USB_CONNECTED_LED, GPIO_OUT);
#endif
#ifdef PROBE_DAP_CONNECTED_LED
gpio_init(PROBE_DAP_CONNECTED_LED);
gpio_set_dir(PROBE_DAP_CONNECTED_LED, GPIO_OUT);
#ifdef PICOPROBE_DAP_CONNECTED_LED
gpio_init(PICOPROBE_DAP_CONNECTED_LED);
gpio_set_dir(PICOPROBE_DAP_CONNECTED_LED, GPIO_OUT);
#endif
#ifdef PROBE_DAP_RUNNING_LED
gpio_init(PROBE_DAP_RUNNING_LED);
gpio_set_dir(PROBE_DAP_RUNNING_LED, GPIO_OUT);
#ifdef PICOPROBE_DAP_RUNNING_LED
gpio_init(PICOPROBE_DAP_RUNNING_LED);
gpio_set_dir(PICOPROBE_DAP_RUNNING_LED, GPIO_OUT);
#endif
#ifdef PROBE_UART_RX_LED
gpio_init(PROBE_UART_RX_LED);
gpio_set_dir(PROBE_UART_RX_LED, GPIO_OUT);
#ifdef PICOPROBE_UART_RX_LED
gpio_init(PICOPROBE_UART_RX_LED);
gpio_set_dir(PICOPROBE_UART_RX_LED, GPIO_OUT);
#endif
#ifdef PROBE_UART_TX_LED
gpio_init(PROBE_UART_TX_LED);
gpio_set_dir(PROBE_UART_TX_LED, GPIO_OUT);
#ifdef PICOPROBE_UART_TX_LED
gpio_init(PICOPROBE_UART_TX_LED);
gpio_set_dir(PICOPROBE_UART_TX_LED, GPIO_OUT);
#endif
}

View File

@@ -34,7 +34,7 @@
#include "bsp/board.h"
#include "tusb.h"
#include "probe_config.h"
#include "picoprobe_config.h"
#include "probe.h"
#include "cdc_uart.h"
#include "get_serial.h"
@@ -42,8 +42,8 @@
#include "tusb_edpt_handler.h"
#include "DAP.h"
// UART0 for debugprobe debug
// UART1 for debugprobe to target device
// UART0 for Picoprobe debug
// UART1 for picoprobe to target device
static uint8_t TxDataBuffer[CFG_TUD_HID_EP_BUFSIZE];
static uint8_t RxDataBuffer[CFG_TUD_HID_EP_BUFSIZE];
@@ -62,11 +62,11 @@ void usb_thread(void *ptr)
wake = xTaskGetTickCount();
do {
tud_task();
#ifdef PROBE_USB_CONNECTED_LED
if (!gpio_get(PROBE_USB_CONNECTED_LED) && tud_ready())
gpio_put(PROBE_USB_CONNECTED_LED, 1);
#ifdef PICOPROBE_USB_CONNECTED_LED
if (!gpio_get(PICOPROBE_USB_CONNECTED_LED) && tud_ready())
gpio_put(PICOPROBE_USB_CONNECTED_LED, 1);
else
gpio_put(PROBE_USB_CONNECTED_LED, 0);
gpio_put(PICOPROBE_USB_CONNECTED_LED, 0);
#endif
// Go to sleep for up to a tick if nothing to do
if (!tud_task_event_ready())
@@ -80,20 +80,18 @@ void usb_thread(void *ptr)
#endif
int main(void) {
// Declare pins in binary information
bi_decl_config();
board_init();
usb_serial_init();
cdc_uart_init();
tusb_init();
stdio_uart_init();
DAP_Setup();
stdio_uart_init();
led_init();
probe_info("Welcome to debugprobe!\n");
picoprobe_info("Welcome to Picoprobe!\n");
if (THREADED) {
/* UART needs to preempt USB as if we don't, characters get lost */
@@ -108,7 +106,7 @@ int main(void) {
tud_task();
cdc_task();
#if (PROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
if (tud_vendor_available()) {
uint32_t resp_len;
tud_vendor_read(RxDataBuffer, sizeof(RxDataBuffer));
@@ -147,7 +145,7 @@ void tud_hid_set_report_cb(uint8_t itf, uint8_t report_id, hid_report_type_t rep
tud_hid_report(0, TxDataBuffer, response_size);
}
#if (PROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
extern uint8_t const desc_ms_os_20[];
bool tud_vendor_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request)

View File

@@ -23,64 +23,62 @@
*
*/
#ifndef PROBE_CONFIG_H_
#define PROBE_CONFIG_H_
#ifndef PICOPROBE_H_
#define PICOPROBE_H_
#include "FreeRTOS.h"
#include "task.h"
#if false
#define probe_info(format,args...) \
#define picoprobe_info(format,args...) \
do { \
vTaskSuspendAll(); \
printf(format, ## args); \
xTaskResumeAll(); \
} while (0)
#else
#define probe_info(format,...) ((void)0)
#define picoprobe_info(format,...) ((void)0)
#endif
#if false
#define probe_debug(format,args...) \
#define picoprobe_debug(format,args...) \
do { \
vTaskSuspendAll(); \
printf(format, ## args); \
xTaskResumeAll(); \
} while (0)
#else
#define probe_debug(format,...) ((void)0)
#define picoprobe_debug(format,...) ((void)0)
#endif
#if false
#define probe_dump(format,args...)\
#define picoprobe_dump(format,args...)\
do { \
vTaskSuspendAll(); \
printf(format, ## args); \
xTaskResumeAll(); \
} while (0)
#else
#define probe_dump(format,...) ((void)0)
#define picoprobe_dump(format,...) ((void)0)
#endif
// TODO tie this up with PICO_BOARD defines in the main SDK
#ifdef DEBUG_ON_PICO
#ifndef DEBUGPROBE
#include "board_pico_config.h"
#else
#include "board_debug_probe_config.h"
#include "board_debugprobe_config.h"
#endif
//#include "board_example_config.h"
// Add the configuration to binary information
void bi_decl_config();
#define PROTO_DAP_V1 1
#define PROTO_DAP_V2 2
// Interface config
#ifndef PROBE_DEBUG_PROTOCOL
#define PROBE_DEBUG_PROTOCOL PROTO_DAP_V2
#ifndef PICOPROBE_DEBUG_PROTOCOL
#define PICOPROBE_DEBUG_PROTOCOL PROTO_DAP_V2
#endif
#endif

View File

@@ -31,7 +31,7 @@
#include <hardware/gpio.h>
#include "led.h"
#include "probe_config.h"
#include "picoprobe_config.h"
#include "probe.pio.h"
#include "tusb.h"
@@ -61,7 +61,7 @@ static struct _probe probe;
void probe_set_swclk_freq(uint freq_khz) {
uint clk_sys_freq_khz = clock_get_hz(clk_sys) / 1000;
probe_info("Set swclk freq %dKHz sysclk %dkHz\n", freq_khz, clk_sys_freq_khz);
picoprobe_info("Set swclk freq %dKHz sysclk %dkHz\n", freq_khz, clk_sys_freq_khz);
uint32_t divider = clk_sys_freq_khz / freq_khz / 4;
if (divider == 0)
divider = 1;
@@ -72,7 +72,7 @@ void probe_assert_reset(bool state)
{
#if defined(PROBE_PIN_RESET)
/* Change the direction to out to drive pin to 0 or to in to emulate open drain */
gpio_set_dir(PROBE_PIN_RESET, state == 0 ? GPIO_OUT : GPIO_IN);
gpio_set_dir(PROBE_PIN_RESET, state);
#endif
}
@@ -105,7 +105,7 @@ void probe_write_bits(uint bit_count, uint32_t data_byte) {
DEBUG_PINS_SET(probe_timing, DBG_PIN_WRITE);
pio_sm_put_blocking(pio0, PROBE_SM, fmt_probe_command(bit_count, true, CMD_WRITE));
pio_sm_put_blocking(pio0, PROBE_SM, data_byte);
probe_dump("Write %d bits 0x%x\n", bit_count, data_byte);
picoprobe_dump("Write %d bits 0x%x\n", bit_count, data_byte);
// Return immediately so we can cue up the next command whilst this one runs
DEBUG_PINS_CLR(probe_timing, DBG_PIN_WRITE);
}
@@ -124,7 +124,7 @@ uint32_t probe_read_bits(uint bit_count) {
data_shifted = data >> (32 - bit_count);
}
probe_dump("Read %d bits 0x%x (shifted 0x%x)\n", bit_count, data, data_shifted);
picoprobe_dump("Read %d bits 0x%x (shifted 0x%x)\n", bit_count, data, data_shifted);
DEBUG_PINS_CLR(probe_timing, DBG_PIN_READ);
return data_shifted;
}
@@ -170,9 +170,6 @@ void probe_deinit(void)
probe_read_mode();
pio_sm_set_enabled(pio0, PROBE_SM, 0);
pio_remove_program(pio0, &probe_program, probe.offset);
probe_assert_reset(1); // de-assert nRESET
probe.initted = 0;
}
}

View File

@@ -1,48 +0,0 @@
#include "probe_config.h"
#include "pico/binary_info.h"
#define STR_HELPER(x) #x
#define STR(x) STR_HELPER(x)
void bi_decl_config()
{
#ifdef PROBE_PIN_RESET
bi_decl(bi_1pin_with_name(PROBE_PIN_RESET, "PROBE RESET"));
#endif
#ifdef PROBE_PIN_SWCLK
bi_decl(bi_1pin_with_name(PROBE_PIN_SWCLK, "PROBE SWCLK"));
#endif
#ifdef PROBE_PIN_SWDIO
bi_decl(bi_1pin_with_name(PROBE_PIN_SWDIO, "PROBE SWDIO"));
#endif
#ifdef PROBE_PIN_SWDI
bi_decl(bi_1pin_with_name(PROBE_PIN_SWDI, "PROBE SWDI"));
#endif
#ifdef PROBE_PIN_SWDIOEN
bi_decl(bi_1pin_with_name(PROBE_PIN_SWDIOEN, "PROBE SWDIOEN"));
#endif
#ifdef PROBE_CDC_UART
bi_decl(bi_program_feature("PROBE UART INTERFACE " STR(PROBE_UART_INTERFACE)));
bi_decl(bi_program_feature("PROBE UART BAUDRATE " STR(PROBE_UART_BAUDRATE)));
bi_decl(bi_1pin_with_name(PROBE_UART_TX, "PROBE UART TX"));
bi_decl(bi_1pin_with_name(PROBE_UART_RX, "PROBE UART RX"));
#endif
#ifdef PROBE_UART_CTS
bi_decl(bi_1pin_with_name(PROBE_UART_CTS, "PROBE UART CTS"));
#endif
#ifdef PROBE_UART_RTS
bi_decl(bi_1pin_with_name(PROBE_UART_RTS, "PROBE UART RTS"));
#endif
#ifdef PROBE_UART_DTR
bi_decl(bi_1pin_with_name(PROBE_UART_DTR, "PROBE UART DTR"));
#endif
}

View File

@@ -19,7 +19,7 @@
/*
* This is a shim between the SW_DP functions and the PIO
* implementation used for Debugprobe. Instead of calling bitbash functions,
* implementation used for Picoprobe. Instead of calling bitbash functions,
* hand off the bit sequences to a SM for asynchronous completion.
*/
@@ -47,7 +47,7 @@ void SWJ_Sequence (uint32_t count, const uint8_t *data) {
probe_set_swclk_freq(MAKE_KHZ(DAP_Data.clock_delay));
cached_delay = DAP_Data.clock_delay;
}
probe_debug("SWJ sequence count = %d FDB=0x%2x\n", count, data[0]);
picoprobe_debug("SWJ sequence count = %d FDB=0x%2x\n", count, data[0]);
n = count;
while (n > 0) {
if (n > 8)
@@ -74,7 +74,7 @@ void SWD_Sequence (uint32_t info, const uint8_t *swdo, uint8_t *swdi) {
probe_set_swclk_freq(MAKE_KHZ(DAP_Data.clock_delay));
cached_delay = DAP_Data.clock_delay;
}
probe_debug("SWD sequence\n");
picoprobe_debug("SWD sequence\n");
n = info & SWD_SEQUENCE_CLK;
if (n == 0U) {
n = 64U;
@@ -119,7 +119,7 @@ uint8_t SWD_Transfer (uint32_t request, uint32_t *data) {
probe_set_swclk_freq(MAKE_KHZ(DAP_Data.clock_delay));
cached_delay = DAP_Data.clock_delay;
}
probe_debug("SWD_transfer\n");
picoprobe_debug("SWD_transfer\n");
/* Generate the request packet */
prq |= (1 << 0); /* Start Bit */
for (n = 1; n < 5; n++) {
@@ -149,7 +149,7 @@ uint8_t SWD_Transfer (uint32_t request, uint32_t *data) {
}
if (data)
*data = val;
probe_debug("Read %02x ack %02x 0x%08x parity %01x\n",
picoprobe_debug("Read %02x ack %02x 0x%08x parity %01x\n",
prq, ack, val, bit);
/* Turnaround for line idle */
probe_hiz_clocks(DAP_Data.swd_conf.turnaround);
@@ -163,7 +163,7 @@ uint8_t SWD_Transfer (uint32_t request, uint32_t *data) {
parity = __builtin_popcount(val);
/* Write Parity Bit */
probe_write_bits(1, parity & 0x1);
probe_debug("write %02x ack %02x 0x%08x parity %01x\n",
picoprobe_debug("write %02x ack %02x 0x%08x parity %01x\n",
prq, ack, val, parity);
}
/* Capture Timestamp */

View File

@@ -12,270 +12,207 @@ static uint8_t _rhport;
volatile uint32_t _resp_len;
static uint8_t _out_ep_addr;
static uint8_t _in_ep_addr;
uint8_t _out_ep_addr;
uint8_t _in_ep_addr;
static buffer_t USBRequestBuffer;
static buffer_t USBResponseBuffer;
static uint8_t DAPRequestBuffer[DAP_PACKET_SIZE];
static uint8_t DAPResponseBuffer[DAP_PACKET_SIZE];
#define WR_IDX(x) (x.wptr % DAP_PACKET_COUNT)
#define RD_IDX(x) (x.rptr % DAP_PACKET_COUNT)
#define WR_SLOT_PTR(x) &(x.data[WR_IDX(x)][0])
#define RD_SLOT_PTR(x) &(x.data[RD_IDX(x)][0])
bool buffer_full(buffer_t *buffer)
{
return ((buffer->wptr + 1) % DAP_PACKET_COUNT == buffer->rptr);
}
bool buffer_empty(buffer_t *buffer)
{
return (buffer->wptr == buffer->rptr);
}
buffer_t USBRequestBuffer;
buffer_t USBResponseBuffer;
void dap_edpt_init(void) {
}
void dap_edpt_reset(uint8_t __unused rhport)
{
itf_num = 0;
itf_num = 0;
}
char * dap_cmd_string[] = {
[ID_DAP_Info ] = "DAP_Info",
[ID_DAP_HostStatus ] = "DAP_HostStatus",
[ID_DAP_Connect ] = "DAP_Connect",
[ID_DAP_Disconnect ] = "DAP_Disconnect",
[ID_DAP_TransferConfigure ] = "DAP_TransferConfigure",
[ID_DAP_Transfer ] = "DAP_Transfer",
[ID_DAP_TransferBlock ] = "DAP_TransferBlock",
[ID_DAP_TransferAbort ] = "DAP_TransferAbort",
[ID_DAP_WriteABORT ] = "DAP_WriteABORT",
[ID_DAP_Delay ] = "DAP_Delay",
[ID_DAP_ResetTarget ] = "DAP_ResetTarget",
[ID_DAP_SWJ_Pins ] = "DAP_SWJ_Pins",
[ID_DAP_SWJ_Clock ] = "DAP_SWJ_Clock",
[ID_DAP_SWJ_Sequence ] = "DAP_SWJ_Sequence",
[ID_DAP_SWD_Configure ] = "DAP_SWD_Configure",
[ID_DAP_SWD_Sequence ] = "DAP_SWD_Sequence",
[ID_DAP_JTAG_Sequence ] = "DAP_JTAG_Sequence",
[ID_DAP_JTAG_Configure ] = "DAP_JTAG_Configure",
[ID_DAP_JTAG_IDCODE ] = "DAP_JTAG_IDCODE",
[ID_DAP_SWO_Transport ] = "DAP_SWO_Transport",
[ID_DAP_SWO_Mode ] = "DAP_SWO_Mode",
[ID_DAP_SWO_Baudrate ] = "DAP_SWO_Baudrate",
[ID_DAP_SWO_Control ] = "DAP_SWO_Control",
[ID_DAP_SWO_Status ] = "DAP_SWO_Status",
[ID_DAP_SWO_ExtendedStatus ] = "DAP_SWO_ExtendedStatus",
[ID_DAP_SWO_Data ] = "DAP_SWO_Data",
[ID_DAP_QueueCommands ] = "DAP_QueueCommands",
[ID_DAP_ExecuteCommands ] = "DAP_ExecuteCommands",
};
uint16_t dap_edpt_open(uint8_t __unused rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
{
TU_VERIFY(TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass &&
PICOPROBE_INTERFACE_SUBCLASS == itf_desc->bInterfaceSubClass &&
PICOPROBE_INTERFACE_PROTOCOL == itf_desc->bInterfaceProtocol, 0);
TU_VERIFY(TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass &&
DAP_INTERFACE_SUBCLASS == itf_desc->bInterfaceSubClass &&
DAP_INTERFACE_PROTOCOL == itf_desc->bInterfaceProtocol, 0);
// Initialise circular buffer indices
USBResponseBuffer.packet_wr_idx = 0;
USBResponseBuffer.packet_rd_idx = 0;
USBRequestBuffer.packet_wr_idx = 0;
USBRequestBuffer.packet_rd_idx = 0;
// Initialise circular buffer indices
USBResponseBuffer.wptr = 0;
USBResponseBuffer.rptr = 0;
USBRequestBuffer.wptr = 0;
USBRequestBuffer.rptr = 0;
// Initialse full/empty flags
USBResponseBuffer.wasFull = false;
USBResponseBuffer.wasEmpty = true;
USBRequestBuffer.wasFull = false;
USBRequestBuffer.wasEmpty = true;
// Initialse full/empty flags
USBResponseBuffer.wasFull = false;
USBResponseBuffer.wasEmpty = true;
USBRequestBuffer.wasFull = false;
USBRequestBuffer.wasEmpty = true;
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + (itf_desc->bNumEndpoints * sizeof(tusb_desc_endpoint_t));
TU_VERIFY(max_len >= drv_len, 0);
itf_num = itf_desc->bInterfaceNumber;
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + (itf_desc->bNumEndpoints * sizeof(tusb_desc_endpoint_t));
TU_VERIFY(max_len >= drv_len, 0);
itf_num = itf_desc->bInterfaceNumber;
// Initialising the OUT endpoint
// Initialising the OUT endpoint
tusb_desc_endpoint_t *edpt_desc = (tusb_desc_endpoint_t *) (itf_desc + 1);
uint8_t ep_addr = edpt_desc->bEndpointAddress;
tusb_desc_endpoint_t *edpt_desc = (tusb_desc_endpoint_t *) (itf_desc + 1);
uint8_t ep_addr = edpt_desc->bEndpointAddress;
_out_ep_addr = ep_addr;
_out_ep_addr = ep_addr;
// The OUT endpoint requires a call to usbd_edpt_xfer to initialise the endpoint, giving tinyUSB a buffer to consume when a transfer occurs at the endpoint
usbd_edpt_open(rhport, edpt_desc);
usbd_edpt_xfer(rhport, ep_addr, &(USBRequestBuffer.data[USBRequestBuffer.packet_wr_idx][0]), DAP_PACKET_SIZE);
// The OUT endpoint requires a call to usbd_edpt_xfer to initialise the endpoint, giving tinyUSB a buffer to consume when a transfer occurs at the endpoint
usbd_edpt_open(rhport, edpt_desc);
usbd_edpt_xfer(rhport, ep_addr, WR_SLOT_PTR(USBRequestBuffer), DAP_PACKET_SIZE);
// Initiliasing the IN endpoint
// Initiliasing the IN endpoint
edpt_desc++;
ep_addr = edpt_desc->bEndpointAddress;
edpt_desc++;
ep_addr = edpt_desc->bEndpointAddress;
_in_ep_addr = ep_addr;
_in_ep_addr = ep_addr;
// The IN endpoint doesn't need a transfer to initialise it, as this will be done by the main loop of dap_thread
usbd_edpt_open(rhport, edpt_desc);
// The IN endpoint doesn't need a transfer to initialise it, as this will be done by the main loop of dap_thread
usbd_edpt_open(rhport, edpt_desc);
return drv_len;
return drv_len;
}
bool dap_edpt_control_xfer_cb(uint8_t __unused rhport, uint8_t stage, tusb_control_request_t const *request)
{
return false;
{
return false;
}
// Manage USBResponseBuffer (request) write and USBRequestBuffer (response) read indices
bool dap_edpt_xfer_cb(uint8_t __unused rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
const uint8_t ep_dir = tu_edpt_dir(ep_addr);
{
const uint8_t ep_dir = tu_edpt_dir(ep_addr);
if(ep_dir == TUSB_DIR_IN)
{
if(xferred_bytes >= 0u && xferred_bytes <= DAP_PACKET_SIZE)
{
USBResponseBuffer.rptr++;
if(ep_dir == TUSB_DIR_IN)
{
if(xferred_bytes >= 0u && xferred_bytes <= DAP_PACKET_SIZE)
{
USBResponseBuffer.packet_rd_idx = (USBResponseBuffer.packet_rd_idx + 1) % DAP_PACKET_COUNT;
// This checks that the buffer was not empty in DAP thread, which means the next buffer was not queued up for the in endpoint callback
// So, queue up the buffer at the new read index, since we expect read to catch up to write at this point.
// It is possible for the read index to be multiple spaces behind the write index (if the USB callbacks are lagging behind dap thread),
// so we account for this by only setting wasEmpty to true if the next callback will empty the buffer
if(!USBResponseBuffer.wasEmpty)
{
usbd_edpt_xfer(rhport, ep_addr, RD_SLOT_PTR(USBResponseBuffer), (uint16_t) _resp_len);
USBResponseBuffer.wasEmpty = (USBResponseBuffer.rptr + 1) == USBResponseBuffer.wptr;
}
// This checks that the buffer was not empty in DAP thread, which means the next buffer was not queued up for the in endpoint callback
// So, queue up the buffer at the new read index, since we expect read to catch up to write at this point.
// It is possible for the read index to be multiple spaces behind the write index (if the USB callbacks are lagging behind dap thread),
// so we account for this by only setting wasEmpty to true if the next callback will empty the buffer
if(!USBResponseBuffer.wasEmpty)
{
usbd_edpt_xfer(rhport, ep_addr, &(USBResponseBuffer.data[USBResponseBuffer.packet_rd_idx][0]), (uint16_t) _resp_len);
USBResponseBuffer.wasEmpty = ((USBResponseBuffer.packet_rd_idx + 1) % DAP_PACKET_COUNT == USBResponseBuffer.packet_wr_idx);
}
// Wake up DAP thread after processing the callback
vTaskResume(dap_taskhandle);
return true;
}
// Wake up DAP thread after processing the callback
vTaskResume(dap_taskhandle);
return true;
}
return false;
return false;
} else if(ep_dir == TUSB_DIR_OUT) {
} else if(ep_dir == TUSB_DIR_OUT) {
if(xferred_bytes >= 0u && xferred_bytes <= DAP_PACKET_SIZE)
{
// Only queue the next buffer in the out callback if the buffer is not full
// If full, we set the wasFull flag, which will be checked by dap thread
if(!buffer_full(&USBRequestBuffer))
{
USBRequestBuffer.packet_wr_idx = (USBRequestBuffer.packet_wr_idx + 1) % DAP_PACKET_COUNT;
usbd_edpt_xfer(rhport, ep_addr, &(USBRequestBuffer.data[USBRequestBuffer.packet_wr_idx][0]), DAP_PACKET_SIZE);
USBRequestBuffer.wasFull = false;
}
else {
USBRequestBuffer.wasFull = true;
}
if(xferred_bytes >= 0u && xferred_bytes <= DAP_PACKET_SIZE)
{
// Only queue the next buffer in the out callback if the buffer is not full
// If full, we set the wasFull flag, which will be checked by dap thread
if(!buffer_full(&USBRequestBuffer))
{
USBRequestBuffer.wptr++;
usbd_edpt_xfer(rhport, ep_addr, WR_SLOT_PTR(USBRequestBuffer), DAP_PACKET_SIZE);
USBRequestBuffer.wasFull = false;
}
else {
USBRequestBuffer.wasFull = true;
}
// Wake up DAP thread after processing the callback
vTaskResume(dap_taskhandle);
return true;
}
// Wake up DAP thread after processing the callback
vTaskResume(dap_taskhandle);
return true;
}
return false;
}
else return false;
return false;
}
else return false;
}
void dap_thread(void *ptr)
{
uint32_t n;
do
{
while(USBRequestBuffer.rptr != USBRequestBuffer.wptr)
{
/*
* Atomic command support - buffer QueueCommands, but don't process them
* until a non-QueueCommands packet is seen.
*/
n = USBRequestBuffer.rptr;
while (USBRequestBuffer.data[n % DAP_PACKET_COUNT][0] == ID_DAP_QueueCommands) {
probe_info("%u %u DAP queued cmd %s len %02x\n",
USBRequestBuffer.wptr, USBRequestBuffer.rptr,
dap_cmd_string[USBRequestBuffer.data[n % DAP_PACKET_COUNT][0]], USBRequestBuffer.data[n % DAP_PACKET_COUNT][1]);
USBRequestBuffer.data[n % DAP_PACKET_COUNT][0] = ID_DAP_ExecuteCommands;
n++;
while (n == USBRequestBuffer.wptr) {
/* Need yield in a loop here, as IN callbacks will also wake the thread */
probe_info("DAP wait\n");
vTaskSuspend(dap_taskhandle);
}
}
// Read a single packet from the USB buffer into the DAP Request buffer
memcpy(DAPRequestBuffer, RD_SLOT_PTR(USBRequestBuffer), DAP_PACKET_SIZE);
probe_info("%u %u DAP cmd %s len %02x\n",
USBRequestBuffer.wptr, USBRequestBuffer.rptr,
dap_cmd_string[DAPRequestBuffer[0]], DAPRequestBuffer[1]);
USBRequestBuffer.rptr++;
uint8_t DAPRequestBuffer[DAP_PACKET_SIZE];
uint8_t DAPResponseBuffer[DAP_PACKET_SIZE];
// If the buffer was full in the out callback, we need to queue up another buffer for the endpoint to consume, now that we know there is space in the buffer.
if(USBRequestBuffer.wasFull)
{
vTaskSuspendAll(); // Suspend the scheduler to safely update the write index
USBRequestBuffer.wptr++;
usbd_edpt_xfer(_rhport, _out_ep_addr, WR_SLOT_PTR(USBRequestBuffer), DAP_PACKET_SIZE);
USBRequestBuffer.wasFull = false;
xTaskResumeAll();
}
do
{
while(USBRequestBuffer.packet_rd_idx != USBRequestBuffer.packet_wr_idx)
{
// Read a single packet from the USB buffer into the DAP Request buffer
memcpy(DAPRequestBuffer, &(USBRequestBuffer.data[USBRequestBuffer.packet_rd_idx]), DAP_PACKET_SIZE);
USBRequestBuffer.packet_rd_idx = (USBRequestBuffer.packet_rd_idx + 1) % DAP_PACKET_COUNT;
_resp_len = DAP_ExecuteCommand(DAPRequestBuffer, DAPResponseBuffer);
probe_info("%u %u DAP resp %s\n",
USBResponseBuffer.wptr, USBResponseBuffer.rptr,
dap_cmd_string[DAPResponseBuffer[0]]);
// If the buffer was full in the out callback, we need to queue up another buffer for the endpoint to consume, now that we know there is space in the buffer.
if(USBRequestBuffer.wasFull)
{
vTaskSuspendAll(); // Suspend the scheduler to safely update the write index
USBRequestBuffer.packet_wr_idx = (USBRequestBuffer.packet_wr_idx + 1) % DAP_PACKET_COUNT;
usbd_edpt_xfer(_rhport, _out_ep_addr, &(USBRequestBuffer.data[USBRequestBuffer.packet_wr_idx][0]), DAP_PACKET_SIZE);
USBRequestBuffer.wasFull = false;
xTaskResumeAll();
}
_resp_len = DAP_ProcessCommand(DAPRequestBuffer, DAPResponseBuffer);
// Suspend the scheduler to avoid stale values/race conditions between threads
vTaskSuspendAll();
// Suspend the scheduler to avoid stale values/race conditions between threads
vTaskSuspendAll();
if(buffer_empty(&USBResponseBuffer))
{
memcpy(WR_SLOT_PTR(USBResponseBuffer), DAPResponseBuffer, (uint16_t) _resp_len);
USBResponseBuffer.wptr++;
if(buffer_empty(&USBResponseBuffer))
{
memcpy(&(USBResponseBuffer.data[USBResponseBuffer.packet_wr_idx]), DAPResponseBuffer, (uint16_t) _resp_len);
USBResponseBuffer.packet_wr_idx = (USBResponseBuffer.packet_wr_idx + 1) % DAP_PACKET_COUNT;
usbd_edpt_xfer(_rhport, _in_ep_addr, RD_SLOT_PTR(USBResponseBuffer), (uint16_t) _resp_len);
} else {
usbd_edpt_xfer(_rhport, _in_ep_addr, &(USBResponseBuffer.data[USBResponseBuffer.packet_rd_idx][0]), (uint16_t) _resp_len);
} else {
memcpy(WR_SLOT_PTR(USBResponseBuffer), DAPResponseBuffer, (uint16_t) _resp_len);
USBResponseBuffer.wptr++;
// The In callback needs to check this flag to know when to queue up the next buffer.
USBResponseBuffer.wasEmpty = false;
}
xTaskResumeAll();
}
// Suspend DAP thread until it is awoken by a USB thread callback
vTaskSuspend(dap_taskhandle);
} while (1);
memcpy(&(USBResponseBuffer.data[USBResponseBuffer.packet_wr_idx]), DAPResponseBuffer, (uint16_t) _resp_len);
USBResponseBuffer.packet_wr_idx = (USBResponseBuffer.packet_wr_idx + 1) % DAP_PACKET_COUNT;
// The In callback needs to check this flag to know when to queue up the next buffer.
USBResponseBuffer.wasEmpty = false;
}
xTaskResumeAll();
}
// Suspend DAP thread until it is awoken by a USB thread callback
vTaskSuspend(dap_taskhandle);
} while (1);
}
usbd_class_driver_t const _dap_edpt_driver =
{
.init = dap_edpt_init,
.reset = dap_edpt_reset,
.open = dap_edpt_open,
.control_xfer_cb = dap_edpt_control_xfer_cb,
.xfer_cb = dap_edpt_xfer_cb,
.sof = NULL,
#if CFG_TUSB_DEBUG >= 2
.name = "DAP ENDPOINT"
#endif
.init = dap_edpt_init,
.reset = dap_edpt_reset,
.open = dap_edpt_open,
.control_xfer_cb = dap_edpt_control_xfer_cb,
.xfer_cb = dap_edpt_xfer_cb,
.sof = NULL,
#if CFG_TUSB_DEBUG >= 2
.name = "PICOPROBE ENDPOINT"
#endif
};
// Add the custom driver to the tinyUSB stack
usbd_class_driver_t const *usbd_app_driver_get_cb(uint8_t *driver_count)
{
*driver_count = 1;
return &_dap_edpt_driver;
*driver_count = 1;
return &_dap_edpt_driver;
}
bool buffer_full(buffer_t *buffer)
{
return ((buffer->packet_wr_idx + 1) % DAP_PACKET_COUNT == buffer->packet_rd_idx);
}
bool buffer_empty(buffer_t *buffer)
{
return (buffer->packet_wr_idx == buffer->packet_rd_idx);
}

View File

@@ -12,15 +12,15 @@
#include "device/usbd_pvt.h"
#include "DAP_config.h"
#define DAP_INTERFACE_SUBCLASS 0x00
#define DAP_INTERFACE_PROTOCOL 0x00
#define PICOPROBE_INTERFACE_SUBCLASS 0x00
#define PICOPROBE_INTERFACE_PROTOCOL 0x00
typedef struct {
uint8_t data[DAP_PACKET_COUNT][DAP_PACKET_SIZE];
volatile uint32_t wptr;
volatile uint32_t rptr;
volatile bool wasEmpty;
volatile bool wasFull;
uint8_t data[DAP_PACKET_COUNT][DAP_PACKET_SIZE];
volatile uint32_t packet_wr_idx;
volatile uint32_t packet_rd_idx;
volatile bool wasEmpty;
volatile bool wasFull;
} buffer_t;
extern TaskHandle_t dap_taskhandle, tud_taskhandle;
@@ -29,13 +29,13 @@ extern TaskHandle_t dap_taskhandle, tud_taskhandle;
void dap_thread(void *ptr);
/* Endpoint Handling */
void dap_edpt_init(void);
uint16_t dap_edpt_open(uint8_t __unused rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
bool dap_edpt_control_xfer_cb(uint8_t __unused rhport, uint8_t stage, tusb_control_request_t const *request);
bool dap_edpt_xfer_cb(uint8_t __unused rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void picoprobe_edpt_init(void);
uint16_t picoprobe_edpt_open(uint8_t __unused rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
bool picoprobe_edpt_control_xfer_cb(uint8_t __unused rhport, uint8_t stage, tusb_control_request_t const *request);
bool picoprobe_edpt_xfer_cb(uint8_t __unused rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
/* Helper Functions */
bool buffer_full(buffer_t *buffer);
bool buffer_empty(buffer_t *buffer);
#endif
#endif

View File

@@ -27,7 +27,7 @@
#include "tusb.h"
#include "get_serial.h"
#include "probe_config.h"
#include "picoprobe_config.h"
//--------------------------------------------------------------------+
// Device Descriptors
@@ -36,7 +36,7 @@ tusb_desc_device_t const desc_device =
{
.bLength = sizeof(tusb_desc_device_t),
.bDescriptorType = TUSB_DESC_DEVICE,
#if (PROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
.bcdUSB = 0x0210, // USB Specification version 2.1 for BOS
#else
.bcdUSB = 0x0110,
@@ -48,7 +48,7 @@ tusb_desc_device_t const desc_device =
.idVendor = 0x2E8A, // Pi
.idProduct = 0x000c, // CMSIS-DAP Debug Probe
.bcdDevice = 0x0201, // Version 02.01
.bcdDevice = 0x0103, // Version 01.03
.iManufacturer = 0x01,
.iProduct = 0x02,
.iSerialNumber = 0x03,
@@ -77,10 +77,10 @@ enum
#define CDC_NOTIFICATION_EP_NUM 0x81
#define CDC_DATA_OUT_EP_NUM 0x02
#define CDC_DATA_IN_EP_NUM 0x83
#define DAP_OUT_EP_NUM 0x04
#define DAP_IN_EP_NUM 0x85
#define PROBE_OUT_EP_NUM 0x04
#define PROBE_IN_EP_NUM 0x85
#if (PROBE_DEBUG_PROTOCOL == PROTO_DAP_V1)
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V1)
#define CONFIG_TOTAL_LEN (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN + TUD_HID_INOUT_DESC_LEN)
#else
#define CONFIG_TOTAL_LEN (TUD_CONFIG_DESC_LEN + TUD_CDC_DESC_LEN + TUD_VENDOR_DESC_LEN)
@@ -97,19 +97,19 @@ uint8_t const * tud_hid_descriptor_report_cb(uint8_t itf)
return desc_hid_report;
}
uint8_t desc_configuration[] =
uint8_t const desc_configuration[] =
{
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0, 100),
// Interface 0
#if (PROBE_DEBUG_PROTOCOL == PROTO_DAP_V1)
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V1)
// HID (named interface)
TUD_HID_INOUT_DESCRIPTOR(ITF_NUM_PROBE, 4, HID_ITF_PROTOCOL_NONE, sizeof(desc_hid_report), DAP_OUT_EP_NUM, DAP_IN_EP_NUM, CFG_TUD_HID_EP_BUFSIZE, 1),
#elif (PROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
TUD_HID_INOUT_DESCRIPTOR(ITF_NUM_PROBE, 4, HID_ITF_PROTOCOL_NONE, sizeof(desc_hid_report), PROBE_OUT_EP_NUM, PROBE_IN_EP_NUM, CFG_TUD_HID_EP_BUFSIZE, 1),
#elif (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
// Bulk (named interface)
TUD_VENDOR_DESCRIPTOR(ITF_NUM_PROBE, 5, DAP_OUT_EP_NUM, DAP_IN_EP_NUM, 64),
#elif (PROBE_DEBUG_PROTOCOL == PROTO_OPENOCD_CUSTOM)
TUD_VENDOR_DESCRIPTOR(ITF_NUM_PROBE, 5, PROBE_OUT_EP_NUM, PROBE_IN_EP_NUM, 64),
#elif (PICOPROBE_DEBUG_PROTOCOL == PROTO_OPENOCD_CUSTOM)
// Bulk
TUD_VENDOR_DESCRIPTOR(ITF_NUM_PROBE, 0, DAP_OUT_EP_NUM, DAP_IN_EP_NUM, 64),
TUD_VENDOR_DESCRIPTOR(ITF_NUM_PROBE, 0, PROBE_OUT_EP_NUM, PROBE_IN_EP_NUM, 64),
#endif
// Interface 1 + 2
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_COM, 6, CDC_NOTIFICATION_EP_NUM, 64, CDC_DATA_OUT_EP_NUM, CDC_DATA_IN_EP_NUM, 64),
@@ -121,8 +121,6 @@ uint8_t desc_configuration[] =
uint8_t const * tud_descriptor_configuration_cb(uint8_t index)
{
(void) index; // for multiple configurations
/* Hack in CAP_BREAK support */
desc_configuration[CONFIG_TOTAL_LEN - TUD_CDC_DESC_LEN + 8 + 9 + 5 + 5 + 4 - 1] = 0x6;
return desc_configuration;
}