Compare commits

..

1 Commits

Author SHA1 Message Date
Jonathan Bell
1c36b52049 probe: handle pipelined OUT transfers properly
A consequence of tinyUSB's implementation of vendor interfaces is that
it treats pipe traffic as free-flowing, i.e. no distinction is made if a
short packet is received. CMSIS-DAP should ordinarily encapsulate a set
of commands in a single packet, but if multiple packets are receieved
before the FIFO is drained then all the commands need to be processed at
once.

Ensure there is always enough RX space, and TX space for the generated
response.
2022-11-22 17:06:02 +00:00
22 changed files with 380 additions and 975 deletions

View File

@@ -17,7 +17,6 @@ add_executable(picoprobe
src/cdc_uart.c
src/get_serial.c
src/sw_dp_pio.c
src/tusb_edpt_handler.c
)
target_sources(picoprobe PRIVATE
@@ -36,8 +35,14 @@ target_include_directories(picoprobe PRIVATE
target_compile_options(picoprobe PRIVATE -Wall)
if (DEFINED ENV{PICOPROBE_LED})
message("PICOPROBE_LED is defined as " $ENV{PICOPROBE_LED})
target_compile_definitions(picoprobe PRIVATE PICOPROBE_LED=$ENV{PICOPROBE_LED})
endif()
set(DBG_PIN_COUNT=4)
pico_generate_pio_header(picoprobe ${CMAKE_CURRENT_LIST_DIR}/src/probe.pio)
pico_generate_pio_header(picoprobe ${CMAKE_CURRENT_LIST_DIR}/src/probe_oen.pio)
target_include_directories(picoprobe PRIVATE src)
@@ -45,17 +50,6 @@ target_compile_definitions (picoprobe PRIVATE
PICO_RP2040_USB_DEVICE_ENUMERATION_FIX=1
)
option (DEBUGPROBE "compile for the debugprobe" OFF)
if (DEBUGPROBE)
target_compile_definitions (picoprobe PRIVATE
DEBUGPROBE=1
)
set_target_properties(picoprobe PROPERTIES
OUTPUT_NAME "debugprobe"
)
endif ()
target_link_libraries(picoprobe PRIVATE
pico_multicore
pico_stdlib

View File

@@ -3,39 +3,3 @@ Picoprobe allows a Pico / RP2040 to be used as USB -> SWD and UART bridge. This
# Documentation
Picoprobe documentation can be found in the [Pico Getting Started Guide](https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf). See "Appendix A: Using Picoprobe".
# Hacking
For the purpose of making changes or studying of the code, you may want to compile the code yourself.
To compile this project firstly initialize and update the submodules:
```
git submodule update --init
```
then create and switch to the build directory:
```
mkdir build
cd build
```
then run cmake and build the code:
```
cmake ..
make
```
Done! You should now have a `picoprobe.uf2` that you can upload to your Pico in the normal way.
If you want to create the version that runs on the Raspberry Pi Debug Probe, then you need to invoke `cmake` in the sequence above with the `DEBUGPROBE=ON` option:
```
cmake -DDEBUGPROBE=ON ..
```
This will build with the configuration for the Debug Probe and call the output program `debugprobe.uf2`, as opposed to `picoprobe.uf2` for the vanilla version.
Note that if you first ran through the whole sequence to compile for the Pico, then you don't need to start back at the top. You can just go back to the `cmake` step and start from there.
# TODO
- TinyUSB's vendor interface is FIFO-based and not packet-based. Using raw tx/rx callbacks is preferable as this stops DAP command batches from being concatenated, which confused openOCD.
- Instead of polling, move the DAP thread to an asynchronously started/stopped one-shot operation to reduce CPU wakeups
- AutoBaud selection, as PIO is a capable frequency counter
- Possibly include RTT support

View File

@@ -62,7 +62,6 @@ This information includes:
/// a Cortex-M0+ processor with high-speed peripheral I/O only 1 processor cycle might be
/// required.
#define IO_PORT_WRITE_CYCLES 1U ///< I/O Cycles: 2=default, 1=Cortex-M0+ fast I/0.
#define DELAY_SLOW_CYCLES 1U // We don't differentiate between fast/slow, we've got a 16-bit divisor for that
/// Indicate that Serial Wire Debug (SWD) communication mode is available at the Debug Access Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
@@ -95,7 +94,7 @@ This information includes:
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. For devices with limited RAM or USB buffer the
/// setting can be reduced (valid range is 1 .. 255).
#define DAP_PACKET_COUNT 2U ///< Specifies number of packets buffered.
#define DAP_PACKET_COUNT 3U ///< Specifies number of packets buffered.
/// Indicate that UART Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
@@ -460,11 +459,7 @@ __STATIC_FORCEINLINE void PIN_nTRST_OUT (uint32_t bit) {
\return Current status of the nRESET DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nRESET_IN (void) {
#ifdef PROBE_PIN_RESET
return probe_reset_level();
#else
return (0U);
#endif
}
/** nRESET I/O pin: Set Output.
@@ -473,11 +468,7 @@ __STATIC_FORCEINLINE uint32_t PIN_nRESET_IN (void) {
- 1: release device hardware reset.
*/
__STATIC_FORCEINLINE void PIN_nRESET_OUT (uint32_t bit) {
#ifdef PROBE_PIN_RESET
probe_assert_reset(!!bit);
#else
(void) bit;
#endif
;
}
///@}
@@ -501,22 +492,14 @@ It is recommended to provide the following LEDs for status indication:
- 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit.
- 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit.
*/
__STATIC_INLINE void LED_CONNECTED_OUT (uint32_t bit) {
#ifdef PICOPROBE_DAP_CONNECTED_LED
gpio_put(PICOPROBE_DAP_CONNECTED_LED, bit);
#endif
}
__STATIC_INLINE void LED_CONNECTED_OUT (uint32_t bit) {}
/** Debug Unit: Set status Target Running LED.
\param bit status of the Target Running LED.
- 1: Target Running LED ON: program execution in target started.
- 0: Target Running LED OFF: program execution in target stopped.
*/
__STATIC_INLINE void LED_RUNNING_OUT (uint32_t bit) {
#ifdef PICOPROBE_DAP_RUNNING_LED
gpio_put(PICOPROBE_DAP_RUNNING_LED, bit);
#endif
}
__STATIC_INLINE void LED_RUNNING_OUT (uint32_t bit) {}
///@}

View File

@@ -1,55 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2023 Raspberry Pi (Trading) Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#ifndef BOARD_DEBUGPROBE_H_
#define BOARD_DEBUGPROBE_H_
#define PROBE_IO_SWDI
#define PROBE_CDC_UART
// No reset pin
// PIO config
#define PROBE_SM 0
#define PROBE_PIN_OFFSET 12
#define PROBE_PIN_SWCLK (PROBE_PIN_OFFSET + 0)
// For level-shifted input.
#define PROBE_PIN_SWDI (PROBE_PIN_OFFSET + 1)
#define PROBE_PIN_SWDIO (PROBE_PIN_OFFSET + 2)
// UART config
#define PICOPROBE_UART_TX 4
#define PICOPROBE_UART_RX 5
#define PICOPROBE_UART_INTERFACE uart1
#define PICOPROBE_UART_BAUDRATE 115200
#define PICOPROBE_USB_CONNECTED_LED 2
#define PICOPROBE_DAP_CONNECTED_LED 15
#define PICOPROBE_DAP_RUNNING_LED 16
#define PICOPROBE_UART_RX_LED 7
#define PICOPROBE_UART_TX_LED 8
#define PROBE_PRODUCT_STRING "Debug Probe (CMSIS-DAP)"
#endif

View File

@@ -1,82 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2023 Raspberry Pi (Trading) Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#ifndef BOARD_EXAMPLE_H_
#define BOARD_EXAMPLE_H_
#error "Example board configuration requested - specify PICO_BOARD and re-run CMake."
/* Select one of these. */
/* Direct connection - SWCLK/SWDIO on two GPIOs */
#define PROBE_IO_RAW
/* SWCLK connected to a GPIO, SWDO driven from a GPIO, SWDI sampled via a level shifter */
#define PROBE_IO_SWDI
/* Level-shifted SWCLK, SWDIO with separate SWDO, SWDI and OE_N pin */
#define PROBE_IO_OEN
/* Include CDC interface to bridge to target UART. Omit if not used. */
#define PROBE_CDC_UART
/* Target reset GPIO (active-low). Omit if not used.*/
#define PROBE_PIN_RESET 1
#define PROBE_SM 0
#define PROBE_PIN_OFFSET 12
/* PIO config for PROBE_IO_RAW */
#if defined(PROBE_IO_RAW)
#define PROBE_PIN_SWCLK (PROBE_PIN_OFFSET + 0)
#define PROBE_PIN_SWDIO (PROBE_PIN_OFFSET + 1)
#endif
/* PIO config for PROBE_IO_SWDI */
#if defined(PROBE_IO_SWDI)
#define PROBE_PIN_SWCLK (PROBE_PIN_OFFSET + 0)
#define PROBE_PIN_SWDIO (PROBE_PIN_OFFSET + 1)
#define PROBE_PIN_SWDI (PROBE_PIN_OFFSET + 2)
#endif
/* PIO config for PROBE_IO_OEN - note that SWDIOEN and SWCLK are both side_set signals, so must be consecutive. */
#if defined(PROBE_IO_SWDIOEN)
#define PROBE_PIN_SWDIOEN (PROBE_PIN_OFFSET + 0)
#define PROBE_PIN_SWCLK (PROBE_PIN_OFFSET + 1)
#define PROBE_PIN_SWDIO (PROBE_PIN_OFFSET + 2)
#define PROBE_PIN_SWDI (PROBE_PIN_OFFSET + 3)
#endif
#if defined(PROBE_CDC_UART)
#define PICOPROBE_UART_TX 4
#define PICOPROBE_UART_RX 5
#define PICOPROBE_UART_INTERFACE uart1
#define PICOPROBE_UART_BAUDRATE 115200
#endif
/* LED config - some or all of these can be omitted if not used */
#define PICOPROBE_USB_CONNECTED_LED 2
#define PICOPROBE_DAP_CONNECTED_LED 15
#define PICOPROBE_DAP_RUNNING_LED 16
#define PICOPROBE_UART_RX_LED 7
#define PICOPROBE_UART_TX_LED 8
#define PROBE_PRODUCT_STRING "Example Debug Probe"
#endif

View File

@@ -1,52 +0,0 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2023 Raspberry Pi (Trading) Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#ifndef BOARD_PICO_H_
#define BOARD_PICO_H_
#define PROBE_IO_RAW
#define PROBE_CDC_UART
// PIO config
#define PROBE_SM 0
#define PROBE_PIN_OFFSET 2
#define PROBE_PIN_SWCLK (PROBE_PIN_OFFSET + 0) // 2
#define PROBE_PIN_SWDIO (PROBE_PIN_OFFSET + 1) // 3
// Target reset config
#if false
#define PROBE_PIN_RESET 1
#endif
// UART config
#define PICOPROBE_UART_TX 4
#define PICOPROBE_UART_RX 5
#define PICOPROBE_UART_INTERFACE uart1
#define PICOPROBE_UART_BAUDRATE 115200
#define PICOPROBE_USB_CONNECTED_LED 25
#define PROBE_PRODUCT_STRING "Picoprobe (CMSIS-DAP)"
#endif

View File

@@ -3,6 +3,8 @@
# This can be dropped into an external project to help locate this SDK
# It should be include()ed prior to project()
# todo document
if (DEFINED ENV{PICO_SDK_PATH} AND (NOT PICO_SDK_PATH))
set(PICO_SDK_PATH $ENV{PICO_SDK_PATH})
message("Using PICO_SDK_PATH from environment ('${PICO_SDK_PATH}')")
@@ -18,8 +20,8 @@ if (DEFINED ENV{PICO_SDK_FETCH_FROM_GIT_PATH} AND (NOT PICO_SDK_FETCH_FROM_GIT_P
message("Using PICO_SDK_FETCH_FROM_GIT_PATH from environment ('${PICO_SDK_FETCH_FROM_GIT_PATH}')")
endif ()
set(PICO_SDK_PATH "${PICO_SDK_PATH}" CACHE PATH "Path to the Raspberry Pi Pico SDK")
set(PICO_SDK_FETCH_FROM_GIT "${PICO_SDK_FETCH_FROM_GIT}" CACHE BOOL "Set to ON to fetch copy of SDK from git if not otherwise locatable")
set(PICO_SDK_PATH "${PICO_SDK_PATH}" CACHE PATH "Path to the PICO SDK")
set(PICO_SDK_FETCH_FROM_GIT "${PICO_SDK_FETCH_FROM_GIT}" CACHE BOOL "Set to ON to fetch copy of PICO SDK from git if not otherwise locatable")
set(PICO_SDK_FETCH_FROM_GIT_PATH "${PICO_SDK_FETCH_FROM_GIT_PATH}" CACHE FILEPATH "location to download SDK")
if (NOT PICO_SDK_PATH)
@@ -29,31 +31,20 @@ if (NOT PICO_SDK_PATH)
if (PICO_SDK_FETCH_FROM_GIT_PATH)
get_filename_component(FETCHCONTENT_BASE_DIR "${PICO_SDK_FETCH_FROM_GIT_PATH}" REALPATH BASE_DIR "${CMAKE_SOURCE_DIR}")
endif ()
# GIT_SUBMODULES_RECURSE was added in 3.17
if (${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.17.0")
FetchContent_Declare(
pico_sdk
GIT_REPOSITORY https://github.com/raspberrypi/pico-sdk
GIT_TAG master
GIT_SUBMODULES_RECURSE FALSE
)
else ()
FetchContent_Declare(
pico_sdk
GIT_REPOSITORY https://github.com/raspberrypi/pico-sdk
GIT_TAG master
)
endif ()
FetchContent_Declare(
pico_sdk
GIT_REPOSITORY https://github.com/raspberrypi/pico-sdk
GIT_TAG master
)
if (NOT pico_sdk)
message("Downloading Raspberry Pi Pico SDK")
message("Downloading PICO SDK")
FetchContent_Populate(pico_sdk)
set(PICO_SDK_PATH ${pico_sdk_SOURCE_DIR})
endif ()
set(FETCHCONTENT_BASE_DIR ${FETCHCONTENT_BASE_DIR_SAVE})
else ()
message(FATAL_ERROR
"SDK location was not specified. Please set PICO_SDK_PATH or set PICO_SDK_FETCH_FROM_GIT to on to fetch from git."
"PICO SDK location was not specified. Please set PICO_SDK_PATH or set PICO_SDK_FETCH_FROM_GIT to on to fetch from git."
)
endif ()
endif ()
@@ -65,9 +56,9 @@ endif ()
set(PICO_SDK_INIT_CMAKE_FILE ${PICO_SDK_PATH}/pico_sdk_init.cmake)
if (NOT EXISTS ${PICO_SDK_INIT_CMAKE_FILE})
message(FATAL_ERROR "Directory '${PICO_SDK_PATH}' does not appear to contain the Raspberry Pi Pico SDK")
message(FATAL_ERROR "Directory '${PICO_SDK_PATH}' does not appear to contain the PICO SDK")
endif ()
set(PICO_SDK_PATH ${PICO_SDK_PATH} CACHE PATH "Path to the Raspberry Pi Pico SDK" FORCE)
set(PICO_SDK_PATH ${PICO_SDK_PATH} CACHE PATH "Path to the PICO SDK" FORCE)
include(${PICO_SDK_INIT_CMAKE_FILE})

View File

@@ -71,7 +71,7 @@
/* Memory allocation related definitions. */
#define configSUPPORT_STATIC_ALLOCATION 0
#define configSUPPORT_DYNAMIC_ALLOCATION 1
#define configTOTAL_HEAP_SIZE (64*1024)
#define configTOTAL_HEAP_SIZE (128*1024)
#define configAPPLICATION_ALLOCATED_HEAP 0
/* Hook function related definitions. */

View File

@@ -34,20 +34,8 @@
TaskHandle_t uart_taskhandle;
TickType_t last_wake, interval = 100;
/* Max 1 FIFO worth of data */
static uint8_t tx_buf[32];
static uint8_t rx_buf[32];
// Actually s^-1 so 25ms
#define DEBOUNCE_MS 40
static uint debounce_ticks = 5;
#ifdef PICOPROBE_UART_TX_LED
static uint tx_led_debounce;
#endif
#ifdef PICOPROBE_UART_RX_LED
static uint rx_led_debounce;
#endif
static uint8_t tx_buf[CFG_TUD_CDC_TX_BUFSIZE];
static uint8_t rx_buf[CFG_TUD_CDC_RX_BUFSIZE];
void cdc_uart_init(void) {
gpio_set_function(PICOPROBE_UART_TX, GPIO_FUNC_UART);
@@ -60,7 +48,6 @@ void cdc_uart_init(void) {
void cdc_task(void)
{
static int was_connected = 0;
static uint cdc_tx_oe = 0;
uint rx_len = 0;
// Consume uart fifo regardless even if not connected
@@ -74,51 +61,25 @@ void cdc_task(void)
/* Implicit overflow if we don't write all the bytes to the host.
* Also throw away bytes if we can't write... */
if (rx_len) {
#ifdef PICOPROBE_UART_RX_LED
gpio_put(PICOPROBE_UART_RX_LED, 1);
rx_led_debounce = debounce_ticks;
#endif
written = MIN(tud_cdc_write_available(), rx_len);
if (rx_len > written)
cdc_tx_oe++;
if (written > 0) {
tud_cdc_write(rx_buf, written);
tud_cdc_write_flush();
}
} else {
#ifdef PICOPROBE_UART_RX_LED
if (rx_led_debounce)
rx_led_debounce--;
else
gpio_put(PICOPROBE_UART_RX_LED, 0);
#endif
}
/* Reading from a firehose and writing to a FIFO. */
size_t watermark = MIN(tud_cdc_available(), sizeof(tx_buf));
if (watermark > 0) {
size_t tx_len;
#ifdef PICOPROBE_UART_TX_LED
gpio_put(PICOPROBE_UART_TX_LED, 1);
tx_led_debounce = debounce_ticks;
#endif
/* Batch up to half a FIFO of data - don't clog up on RX */
watermark = MIN(watermark, 16);
tx_len = tud_cdc_read(tx_buf, watermark);
uart_write_blocking(PICOPROBE_UART_INTERFACE, tx_buf, tx_len);
} else {
#ifdef PICOPROBE_UART_TX_LED
if (tx_led_debounce)
tx_led_debounce--;
else
gpio_put(PICOPROBE_UART_TX_LED, 0);
#endif
}
} else if (was_connected) {
tud_cdc_write_clear();
was_connected = 0;
cdc_tx_oe = 0;
}
}
@@ -137,67 +98,20 @@ void cdc_thread(void *ptr)
void tud_cdc_line_coding_cb(uint8_t itf, cdc_line_coding_t const* line_coding)
{
uart_parity_t parity;
uint data_bits, stop_bits;
/* Set the tick thread interval to the amount of time it takes to
* fill up half a FIFO. Millis is too coarse for integer divide.
*/
uint32_t micros = (1000 * 1000 * 16 * 10) / MAX(line_coding->bit_rate, 1);
/* Modifying state, so park the thread before changing it. */
vTaskSuspend(uart_taskhandle);
interval = MAX(1, micros / ((1000 * 1000) / configTICK_RATE_HZ));
debounce_ticks = MAX(1, configTICK_RATE_HZ / (interval * DEBOUNCE_MS));
picoprobe_info("New baud rate %ld micros %ld interval %lu\n",
picoprobe_info("New baud rate %d micros %d interval %u\n",
line_coding->bit_rate, micros, interval);
uart_deinit(PICOPROBE_UART_INTERFACE);
tud_cdc_write_clear();
tud_cdc_read_flush();
uart_init(PICOPROBE_UART_INTERFACE, line_coding->bit_rate);
switch (line_coding->parity) {
case CDC_LINE_CODING_PARITY_ODD:
parity = UART_PARITY_ODD;
break;
case CDC_LINE_CODING_PARITY_EVEN:
parity = UART_PARITY_EVEN;
break;
default:
picoprobe_info("invalid parity setting %u\n", line_coding->parity);
/* fallthrough */
case CDC_LINE_CODING_PARITY_NONE:
parity = UART_PARITY_NONE;
break;
}
switch (line_coding->data_bits) {
case 5:
case 6:
case 7:
case 8:
data_bits = line_coding->data_bits;
break;
default:
picoprobe_info("invalid data bits setting: %u\n", line_coding->data_bits);
data_bits = 8;
break;
}
/* The PL011 only supports 1 or 2 stop bits. 1.5 stop bits is translated to 2,
* which is safer than the alternative. */
switch (line_coding->stop_bits) {
case CDC_LINE_CONDING_STOP_BITS_1_5:
case CDC_LINE_CONDING_STOP_BITS_2:
stop_bits = 2;
break;
default:
picoprobe_info("invalid stop bits setting: %u\n", line_coding->stop_bits);
/* fallthrough */
case CDC_LINE_CONDING_STOP_BITS_1:
stop_bits = 1;
break;
}
uart_set_format(PICOPROBE_UART_INTERFACE, data_bits, stop_bits, parity);
vTaskResume(uart_taskhandle);
}
@@ -205,16 +119,8 @@ void tud_cdc_line_state_cb(uint8_t itf, bool dtr, bool rts)
{
/* CDC drivers use linestate as a bodge to activate/deactivate the interface.
* Resume our UART polling on activate, stop on deactivate */
if (!dtr && !rts) {
if (!dtr && !rts)
vTaskSuspend(uart_taskhandle);
#ifdef PICOPROBE_UART_RX_LED
gpio_put(PICOPROBE_UART_RX_LED, 0);
rx_led_debounce = 0;
#endif
#ifdef PICOPROBE_UART_RX_LED
gpio_put(PICOPROBE_UART_TX_LED, 0);
tx_led_debounce = 0;
#endif
} else
else
vTaskResume(uart_taskhandle);
}

View File

@@ -28,25 +28,34 @@
#include "picoprobe_config.h"
#define LED_COUNT_SHIFT 14
#define LED_COUNT_MAX 5 * (1 << LED_COUNT_SHIFT)
static uint32_t led_count;
void led_init(void) {
#ifdef PICOPROBE_USB_CONNECTED_LED
gpio_init(PICOPROBE_USB_CONNECTED_LED);
gpio_set_dir(PICOPROBE_USB_CONNECTED_LED, GPIO_OUT);
#endif
#ifdef PICOPROBE_DAP_CONNECTED_LED
gpio_init(PICOPROBE_DAP_CONNECTED_LED);
gpio_set_dir(PICOPROBE_DAP_CONNECTED_LED, GPIO_OUT);
#endif
#ifdef PICOPROBE_DAP_RUNNING_LED
gpio_init(PICOPROBE_DAP_RUNNING_LED);
gpio_set_dir(PICOPROBE_DAP_RUNNING_LED, GPIO_OUT);
#endif
#ifdef PICOPROBE_UART_RX_LED
gpio_init(PICOPROBE_UART_RX_LED);
gpio_set_dir(PICOPROBE_UART_RX_LED, GPIO_OUT);
#endif
#ifdef PICOPROBE_UART_TX_LED
gpio_init(PICOPROBE_UART_TX_LED);
gpio_set_dir(PICOPROBE_UART_TX_LED, GPIO_OUT);
#endif
led_count = 0;
gpio_init(PICOPROBE_LED);
gpio_set_dir(PICOPROBE_LED, GPIO_OUT);
gpio_put(PICOPROBE_LED, 1);
}
void led_task(void) {
if (led_count != 0) {
--led_count;
gpio_put(PICOPROBE_LED, !((led_count >> LED_COUNT_SHIFT) & 1));
}
}
void led_signal_activity(uint total_bits) {
if (led_count == 0) {
gpio_put(PICOPROBE_LED, 0);
}
if (led_count < LED_COUNT_MAX) {
led_count += total_bits;
}
}

View File

@@ -27,5 +27,7 @@
#define LED_H
void led_init(void);
void led_task(void);
void led_signal_activity(uint total_bits);
#endif

View File

@@ -32,21 +32,20 @@
#include <string.h>
#include "bsp/board.h"
#include "tusb.h"
#include "picoprobe_config.h"
#include "probe.h"
#include "tusb.h"
#include "time.h"
#include "cdc_uart.h"
#include "get_serial.h"
#include "led.h"
#include "tusb_edpt_handler.h"
#include "DAP.h"
#include "DAP_config.h"
// UART0 for Picoprobe debug
// UART1 for picoprobe to target device
static uint8_t TxDataBuffer[CFG_TUD_HID_EP_BUFSIZE];
static uint8_t RxDataBuffer[CFG_TUD_HID_EP_BUFSIZE];
static uint8_t TxDataBuffer[CFG_TUD_HID_EP_BUFSIZE * DAP_PACKET_COUNT];
static uint8_t RxDataBuffer[CFG_TUD_HID_EP_BUFSIZE * DAP_PACKET_COUNT];
#define THREADED 1
@@ -54,41 +53,58 @@ static uint8_t RxDataBuffer[CFG_TUD_HID_EP_BUFSIZE];
#define TUD_TASK_PRIO (tskIDLE_PRIORITY + 2)
#define DAP_TASK_PRIO (tskIDLE_PRIORITY + 1)
TaskHandle_t dap_taskhandle, tud_taskhandle;
static TaskHandle_t dap_taskhandle, tud_taskhandle;
void usb_thread(void *ptr)
{
TickType_t wake;
wake = xTaskGetTickCount();
do {
tud_task();
#ifdef PICOPROBE_USB_CONNECTED_LED
if (!gpio_get(PICOPROBE_USB_CONNECTED_LED) && tud_ready())
gpio_put(PICOPROBE_USB_CONNECTED_LED, 1);
else
gpio_put(PICOPROBE_USB_CONNECTED_LED, 0);
#endif
// Go to sleep for up to a tick if nothing to do
if (!tud_task_event_ready())
xTaskDelayUntil(&wake, 1);
// Trivial delay to save power
vTaskDelay(1);
} while (1);
}
// Workaround API change in 0.13
#if (TUSB_VERSION_MAJOR == 0) && (TUSB_VERSION_MINOR <= 12)
#define tud_vendor_flush(x) ((void)0)
#endif
void dap_thread(void *ptr)
{
uint32_t ret;
int32_t packet_len;
uint16_t req_len, resp_len;
uint8_t *rx_ptr;
do {
while (tud_vendor_available()) {
rx_ptr = &RxDataBuffer[0];
packet_len = tud_vendor_read(rx_ptr, sizeof(RxDataBuffer));
picoprobe_debug("Got chunk %u\n", packet_len);
do {
ret = DAP_ProcessCommand(rx_ptr, TxDataBuffer);
resp_len = ret & 0xffff;
req_len = ret >> 16;
tud_vendor_write(TxDataBuffer, resp_len);
rx_ptr += req_len;
packet_len -= req_len;
picoprobe_debug("Packet decode remaining %u req %u resp %u\n",
packet_len, req_len, resp_len);
} while (packet_len > 0);
}
// Trivial delay to save power
vTaskDelay(1);
} while (1);
}
int main(void) {
uint32_t resp_len;
board_init();
usb_serial_init();
cdc_uart_init();
tusb_init();
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_OPENOCD_CUSTOM)
probe_gpio_init();
probe_init();
#else
DAP_Setup();
stdio_uart_init();
#endif
led_init();
picoprobe_info("Welcome to Picoprobe!\n");
@@ -105,10 +121,11 @@ int main(void) {
while (!THREADED) {
tud_task();
cdc_task();
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_OPENOCD_CUSTOM)
probe_task();
led_task();
#elif (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V2)
if (tud_vendor_available()) {
uint32_t resp_len;
tud_vendor_read(RxDataBuffer, sizeof(RxDataBuffer));
resp_len = DAP_ProcessCommand(RxDataBuffer, TxDataBuffer);
tud_vendor_write(TxDataBuffer, resp_len);

View File

@@ -26,53 +26,53 @@
#ifndef PICOPROBE_H_
#define PICOPROBE_H_
#include "FreeRTOS.h"
#include "task.h"
#if false
#define picoprobe_info(format,args...) \
do { \
vTaskSuspendAll(); \
printf(format, ## args); \
xTaskResumeAll(); \
} while (0)
#define picoprobe_info(format,args...) printf(format, ## args)
#else
#define picoprobe_info(format,...) ((void)0)
#endif
#if false
#define picoprobe_debug(format,args...) \
do { \
vTaskSuspendAll(); \
printf(format, ## args); \
xTaskResumeAll(); \
} while (0)
#define picoprobe_debug(format,args...) printf(format, ## args)
#else
#define picoprobe_debug(format,...) ((void)0)
#endif
#if false
#define picoprobe_dump(format,args...)\
do { \
vTaskSuspendAll(); \
printf(format, ## args); \
xTaskResumeAll(); \
} while (0)
#define picoprobe_dump(format,args...) printf(format, ## args)
#else
#define picoprobe_dump(format,...) ((void)0)
#endif
// TODO tie this up with PICO_BOARD defines in the main SDK
#ifndef DEBUGPROBE
#include "board_pico_config.h"
// PIO config
#define PROBE_SM 0
#define PROBE_PIN_OFFSET 2
#define PROBE_PIN_SWCLK (PROBE_PIN_OFFSET + 0) // 2
#define PROBE_PIN_SWDIO (PROBE_PIN_OFFSET + 1) // 3
// Target reset config
#define PROBE_PIN_RESET 6
// UART config
#define PICOPROBE_UART_TX 4
#define PICOPROBE_UART_RX 5
#define PICOPROBE_UART_INTERFACE uart1
#define PICOPROBE_UART_BAUDRATE 115200
// LED config
#ifndef PICOPROBE_LED
#ifndef PICO_DEFAULT_LED_PIN
#error PICO_DEFAULT_LED_PIN is not defined, run PICOPROBE_LED=<led_pin> cmake
#elif PICO_DEFAULT_LED_PIN == -1
#error PICO_DEFAULT_LED_PIN is defined as -1, run PICOPROBE_LED=<led_pin> cmake
#else
#include "board_debugprobe_config.h"
#define PICOPROBE_LED PICO_DEFAULT_LED_PIN
#endif
//#include "board_example_config.h"
#define PROTO_OPENOCD_CUSTOM 0
#define PROTO_DAP_V1 1
#define PROTO_DAP_V2 2
@@ -82,3 +82,5 @@ do { \
#endif
#endif
#endif

View File

@@ -52,6 +52,15 @@ CU_REGISTER_DEBUG_PINS(probe_timing)
#define PROBE_BUF_SIZE 8192
struct _probe {
// Total length
uint tx_len;
// Data back to host
uint8_t tx_buf[PROBE_BUF_SIZE];
// CMD / Data RX'd from
uint rx_len;
uint8_t rx_buf[PROBE_BUF_SIZE];
// PIO offset
uint offset;
uint initted;
@@ -59,65 +68,54 @@ struct _probe {
static struct _probe probe;
enum PROBE_CMDS {
PROBE_INVALID = 0, // Invalid command
PROBE_WRITE_BITS = 1, // Host wants us to write bits
PROBE_READ_BITS = 2, // Host wants us to read bits
PROBE_SET_FREQ = 3, // Set TCK
PROBE_RESET = 4, // Reset all state
PROBE_TARGET_RESET = 5, // Reset target
};
struct __attribute__((__packed__)) probe_cmd_hdr {
uint8_t id;
uint8_t cmd;
uint32_t bits;
};
struct __attribute__((__packed__)) probe_pkt_hdr {
uint32_t total_packet_length;
};
void probe_set_swclk_freq(uint freq_khz) {
uint clk_sys_freq_khz = clock_get_hz(clk_sys) / 1000;
picoprobe_info("Set swclk freq %dKHz sysclk %dkHz\n", freq_khz, clk_sys_freq_khz);
uint32_t divider = clk_sys_freq_khz / freq_khz / 4;
if (divider == 0)
divider = 1;
// Worked out with saleae
uint32_t divider = clk_sys_freq_khz / freq_khz / 2;
pio_sm_set_clkdiv_int_frac(pio0, PROBE_SM, divider, 0);
}
void probe_assert_reset(bool state)
{
#if defined(PROBE_PIN_RESET)
/* Change the direction to out to drive pin to 0 or to in to emulate open drain */
gpio_set_dir(PROBE_PIN_RESET, state);
#endif
}
int probe_reset_level(void)
{
#if defined(PROBE_PIN_RESET)
return gpio_get(PROBE_PIN_RESET);
#else
return 0;
#endif
}
typedef enum probe_pio_command {
CMD_WRITE = 0,
CMD_SKIP,
CMD_TURNAROUND,
CMD_READ
} probe_pio_command_t;
static inline uint32_t fmt_probe_command(uint bit_count, bool out_en, probe_pio_command_t cmd) {
uint cmd_addr =
cmd == CMD_WRITE ? probe.offset + probe_offset_write_cmd :
cmd == CMD_SKIP ? probe.offset + probe_offset_get_next_cmd :
cmd == CMD_TURNAROUND ? probe.offset + probe_offset_turnaround_cmd :
probe.offset + probe_offset_read_cmd;
return ((bit_count - 1) & 0xff) | ((uint)out_en << 8) | (cmd_addr << 9);
}
void probe_write_bits(uint bit_count, uint32_t data_byte) {
DEBUG_PINS_SET(probe_timing, DBG_PIN_WRITE);
pio_sm_put_blocking(pio0, PROBE_SM, fmt_probe_command(bit_count, true, CMD_WRITE));
pio_sm_put_blocking(pio0, PROBE_SM, bit_count - 1);
pio_sm_put_blocking(pio0, PROBE_SM, data_byte);
DEBUG_PINS_SET(probe_timing, DBG_PIN_WRITE_WAIT);
picoprobe_dump("Write %d bits 0x%x\n", bit_count, data_byte);
// Return immediately so we can cue up the next command whilst this one runs
// Wait for pio to push garbage to rx fifo so we know it has finished sending
pio_sm_get_blocking(pio0, PROBE_SM);
DEBUG_PINS_CLR(probe_timing, DBG_PIN_WRITE_WAIT);
DEBUG_PINS_CLR(probe_timing, DBG_PIN_WRITE);
}
void probe_hiz_clocks(uint bit_count) {
pio_sm_put_blocking(pio0, PROBE_SM, fmt_probe_command(bit_count, false, CMD_TURNAROUND));
pio_sm_put_blocking(pio0, PROBE_SM, 0);
}
uint32_t probe_read_bits(uint bit_count) {
DEBUG_PINS_SET(probe_timing, DBG_PIN_READ);
pio_sm_put_blocking(pio0, PROBE_SM, fmt_probe_command(bit_count, false, CMD_READ));
pio_sm_put_blocking(pio0, PROBE_SM, bit_count - 1);
uint32_t data = pio_sm_get_blocking(pio0, PROBE_SM);
uint32_t data_shifted = data;
if (bit_count < 32) {
@@ -129,47 +127,189 @@ uint32_t probe_read_bits(uint bit_count) {
return data_shifted;
}
static void probe_wait_idle() {
pio0->fdebug = 1u << (PIO_FDEBUG_TXSTALL_LSB + PROBE_SM);
while (!(pio0->fdebug & (1u << (PIO_FDEBUG_TXSTALL_LSB + PROBE_SM))))
;
}
void probe_read_mode(void) {
pio_sm_put_blocking(pio0, PROBE_SM, fmt_probe_command(0, false, CMD_SKIP));
probe_wait_idle();
pio_sm_exec(pio0, PROBE_SM, pio_encode_jmp(probe.offset + probe_offset_in_posedge));
while(pio0->dbg_padoe & (1 << PROBE_PIN_SWDIO));
}
void probe_write_mode(void) {
pio_sm_put_blocking(pio0, PROBE_SM, fmt_probe_command(0, true, CMD_SKIP));
probe_wait_idle();
pio_sm_exec(pio0, PROBE_SM, pio_encode_jmp(probe.offset + probe_offset_out_negedge));
while(!(pio0->dbg_padoe & (1 << PROBE_PIN_SWDIO)));
}
void probe_gpio_init()
{
// Funcsel pins
pio_gpio_init(pio0, PROBE_PIN_SWCLK);
pio_gpio_init(pio0, PROBE_PIN_SWDIO);
// Make sure SWDIO has a pullup on it. Idle state is high
gpio_pull_up(PROBE_PIN_SWDIO);
}
void probe_init() {
// Target reset pin: pull up, input to emulate open drain pin
gpio_pull_up(PROBE_PIN_RESET);
// gpio_init will leave the pin cleared and set as input
gpio_init(PROBE_PIN_RESET);
if (!probe.initted) {
uint offset = pio_add_program(pio0, &probe_program);
probe.offset = offset;
pio_sm_config sm_config = probe_program_get_default_config(offset);
probe_sm_init(&sm_config);
// Set SWCLK as a sideset pin
sm_config_set_sideset_pins(&sm_config, PROBE_PIN_SWCLK);
// Set SWDIO offset
sm_config_set_out_pins(&sm_config, PROBE_PIN_SWDIO, 1);
sm_config_set_set_pins(&sm_config, PROBE_PIN_SWDIO, 1);
sm_config_set_in_pins(&sm_config, PROBE_PIN_SWDIO);
// Set SWD and SWDIO pins as output to start. This will be set in the sm
pio_sm_set_consecutive_pindirs(pio0, PROBE_SM, PROBE_PIN_OFFSET, 2, true);
// shift output right, autopull off, autopull threshold
sm_config_set_out_shift(&sm_config, true, false, 0);
// shift input right as swd data is lsb first, autopush off
sm_config_set_in_shift(&sm_config, true, false, 0);
// Init SM with config
pio_sm_init(pio0, PROBE_SM, offset, &sm_config);
// Set up divisor
probe_set_swclk_freq(1000);
// Jump SM to command dispatch routine, and enable it
pio_sm_exec(pio0, PROBE_SM, offset + probe_offset_get_next_cmd);
// Enable SM
pio_sm_set_enabled(pio0, PROBE_SM, 1);
probe.initted = 1;
}
// Jump to write program
probe_write_mode();
}
void probe_deinit(void)
{
probe_read_mode();
if (probe.initted) {
probe_read_mode();
pio_sm_set_enabled(pio0, PROBE_SM, 0);
pio_remove_program(pio0, &probe_program, probe.offset);
probe.initted = 0;
}
}
void probe_handle_read(uint total_bits) {
picoprobe_debug("Read %d bits\n", total_bits);
probe_read_mode();
uint chunk;
uint bits = total_bits;
while (bits > 0) {
if (bits > 8) {
chunk = 8;
} else {
chunk = bits;
}
probe.tx_buf[probe.tx_len] = (uint8_t)probe_read_bits(chunk);
probe.tx_len++;
// Decrement remaining bits
bits -= chunk;
}
}
void probe_handle_write(uint8_t *data, uint total_bits) {
picoprobe_debug("Write %d bits\n", total_bits);
led_signal_activity(total_bits);
probe_write_mode();
uint chunk;
uint bits = total_bits;
while (bits > 0) {
if (bits > 8) {
chunk = 8;
} else {
chunk = bits;
}
probe_write_bits(chunk, (uint32_t)*data++);
bits -= chunk;
}
}
void probe_prepare_read_header(struct probe_cmd_hdr *hdr) {
// We have a read so need to prefix the data with the cmd header
if (probe.tx_len == 0) {
// Reserve some space for probe_pkt_hdr
probe.tx_len += sizeof(struct probe_pkt_hdr);
}
memcpy((void*)&probe.tx_buf[probe.tx_len], hdr, sizeof(struct probe_cmd_hdr));
probe.tx_len += sizeof(struct probe_cmd_hdr);
}
void probe_handle_pkt(void) {
uint8_t *pkt = &probe.rx_buf[0] + sizeof(struct probe_pkt_hdr);
uint remaining = probe.rx_len - sizeof(struct probe_pkt_hdr);
DEBUG_PINS_SET(probe_timing, DBG_PIN_PKT);
picoprobe_debug("Processing packet of length %d\n", probe.rx_len);
probe.tx_len = 0;
while (remaining) {
struct probe_cmd_hdr *hdr = (struct probe_cmd_hdr*)pkt;
uint data_bytes = DIV_ROUND_UP(hdr->bits, 8);
pkt += sizeof(struct probe_cmd_hdr);
remaining -= sizeof(struct probe_cmd_hdr);
if (hdr->cmd == PROBE_WRITE_BITS) {
uint8_t *data = pkt;
probe_handle_write(data, hdr->bits);
pkt += data_bytes;
remaining -= data_bytes;
} else if (hdr->cmd == PROBE_READ_BITS) {
probe_prepare_read_header(hdr);
probe_handle_read(hdr->bits);
} else if (hdr->cmd == PROBE_SET_FREQ) {
probe_set_swclk_freq(hdr->bits);
} else if (hdr->cmd == PROBE_RESET) {
// TODO: Is there anything to do after a reset?
// tx len and rx len should already be 0
;
} else if (hdr->cmd == PROBE_TARGET_RESET) {
probe_assert_reset(hdr->bits);
}
}
probe.rx_len = 0;
if (probe.tx_len) {
// Fill in total packet length before sending
struct probe_pkt_hdr *tx_hdr = (struct probe_pkt_hdr*)&probe.tx_buf[0];
tx_hdr->total_packet_length = probe.tx_len;
tud_vendor_write(&probe.tx_buf[0], probe.tx_len);
picoprobe_debug("Picoprobe wrote %d response bytes\n", probe.tx_len);
}
probe.tx_len = 0;
DEBUG_PINS_CLR(probe_timing, DBG_PIN_PKT);
}
// USB bits
void probe_task(void) {
if ( tud_vendor_available() ) {
uint count = tud_vendor_read(&probe.rx_buf[probe.rx_len], 64);
if (count == 0) {
return;
}
probe.rx_len += count;
}
if (probe.rx_len >= sizeof(struct probe_pkt_hdr)) {
struct probe_pkt_hdr *pkt_hdr = (struct probe_pkt_hdr*)&probe.rx_buf[0];
if (pkt_hdr->total_packet_length == probe.rx_len) {
probe_handle_pkt();
}
}
}

View File

@@ -26,27 +26,19 @@
#ifndef PROBE_H_
#define PROBE_H_
#if defined(PROBE_IO_RAW) || defined(PROBE_IO_SWDI)
#include "probe.pio.h"
#endif
#if defined(PROBE_IO_OEN)
#include "probe_oen.pio.h"
#endif
void probe_set_swclk_freq(uint freq_khz);
// Bit counts in the range 1..256
void probe_write_bits(uint bit_count, uint32_t data_byte);
uint32_t probe_read_bits(uint bit_count);
void probe_hiz_clocks(uint bit_count);
void probe_read_mode(void);
void probe_write_mode(void);
void probe_handle_read(uint total_bits);
void probe_handle_write(uint8_t *data, uint total_bits);
void probe_task(void);
void probe_gpio_init(void);
void probe_init(void);
void probe_deinit(void);
void probe_assert_reset(bool state);
int probe_reset_level(void);
#endif

View File

@@ -1,7 +1,7 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2021-2023 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@@ -23,91 +23,27 @@
*
*/
// Every TX FIFO entry is either a command, or up to 32 bits of data.
// Command format:
//
// | 13:9 | 8 | 7:0 |
// | Cmd | Dir | Count |
//
// Count is the number of bits to be transferred by this command, minus 1.
// Dir is the output enable for the SWDIO pin.
// Cmd is the address of the write_cmd, read_cmd or get_next_cmd label.
//
// write_cmd expects a FIFO data entry, but read_cmd does not.
//
// read_cmd pushes data to the FIFO, but write_cmd does not. (The lack of RX
// garbage on writes allows the interface code to return early after pushing a
// write command, as there is no need in general to poll for a command's
// completion as long as all commands are executed in order.)
//
// The SWCLK period is 4 PIO SM execution cycles.
.program probe
.side_set 1 opt
public write_cmd:
public turnaround_cmd: ; Alias of write, used for probe_oen.pio
pull
write_bitloop:
out pins, 1 [1] side 0x0 ; Data is output by host on negedge
jmp x-- write_bitloop [1] side 0x1 ; ...and captured by target on posedge
; Fall through to next command
.wrap_target
public get_next_cmd:
pull side 0x0 ; SWCLK is initially low
out x, 8 ; Get bit count
out pindirs, 1 ; Set SWDIO direction
out pc, 5 ; Go to command routine
public out_negedge:
set pindirs, 1 side 0x0 ; Init OE clock 0
pull ; Pull number of bits to shift -1 from tx fifo and put into output shift register
mov x, osr ; mov bits to shift -1 from output shift register into x
pull ; Pull data to shift out
out_negedge_bitloop:
out pins, 1 side 0x0 ; clock data out on falling edge
jmp x-- out_negedge_bitloop side 0x1 ; data is present for posedge
set pins, 1 side 0x0 ; Drive data high (idle bus state)
push ; Push to rx fifo just so processor knows when done
jmp out_negedge ; Wait for next transaction
read_bitloop:
nop ; Additional delay on taken loop branch
public read_cmd:
in pins, 1 [1] side 0x1 ; Data is captured by host on posedge
jmp x-- read_bitloop side 0x0
push
.wrap ; Wrap to next command
; Implement probe_gpio_init() and probe_sm_init() methods here - set pins, offsets, sidesets etc
% c-sdk {
static inline void probe_gpio_init()
{
#if defined(PROBE_PIN_RESET)
// Target reset pin: pull up, input to emulate open drain pin
gpio_pull_up(PROBE_PIN_RESET);
// gpio_init will leave the pin cleared and set as input
gpio_init(PROBE_PIN_RESET);
#endif
// Funcsel pins
pio_gpio_init(pio0, PROBE_PIN_SWCLK);
pio_gpio_init(pio0, PROBE_PIN_SWDIO);
// Make sure SWDIO has a pullup on it. Idle state is high
gpio_pull_up(PROBE_PIN_SWDIO);
}
static inline void probe_sm_init(pio_sm_config* sm_config) {
// Set SWCLK as a sideset pin
sm_config_set_sideset_pins(sm_config, PROBE_PIN_SWCLK);
// Set SWDIO offset
sm_config_set_out_pins(sm_config, PROBE_PIN_SWDIO, 1);
sm_config_set_set_pins(sm_config, PROBE_PIN_SWDIO, 1);
#ifdef PROBE_IO_SWDI
sm_config_set_in_pins(sm_config, PROBE_PIN_SWDI);
#else
sm_config_set_in_pins(sm_config, PROBE_PIN_SWDIO);
#endif
// Set SWD and SWDIO pins as output to start. This will be set in the sm
pio_sm_set_consecutive_pindirs(pio0, PROBE_SM, PROBE_PIN_OFFSET, 2, true);
// shift output right, autopull off, autopull threshold
sm_config_set_out_shift(sm_config, true, false, 0);
// shift input right as swd data is lsb first, autopush off
sm_config_set_in_shift(sm_config, true, false, 0);
}
%}
public in_posedge:
set pindirs, 0 side 0x0 ; INIT IE clock 0
pull ; Pull number of bits to shift -1 from tx fifo and put into output shift register
mov x, osr ; mov bits to shift -1 from output shift register into x into x
in_posedge_bitloop:
in pins, 1 side 0x1 ; Generate posedge and read data
jmp x-- in_posedge_bitloop side 0x0 ;
push ; Push to rx fifo when done
jmp in_posedge ; Jump back to start

View File

@@ -1,82 +0,0 @@
; Output-enable active-low variant of the SWD probe
; This program is very similar to the one in probe.pio. The only difference is
; that here write_cmd and turnaround_cmd are split into two separate routines,
; whose difference is OEn being high/low.
; SWDIO_OEn is pin 0, SWCLK pin 1, SWDIO (out) pin 2, SWDI (in) pin 3.
; Pin 0 and 1 are sideset pins
.program probe
.side_set 2 opt
public turnaround_cmd:
pull
turnaround_bitloop:
nop [1] side 0x1
jmp x-- turnaround_bitloop [1] side 0x3
jmp get_next_cmd
public write_cmd:
pull
write_bitloop:
out pins, 1 [1] side 0x0 ; Data is output by host on negedge
jmp x-- write_bitloop [1] side 0x2 ; ...and captured by target on posedge
; Fall through to next command
.wrap_target
public get_next_cmd:
pull side 0x1 ; SWCLK initially low, OEn disabled
out x, 8 ; Get bit count
out pindirs, 1 ; Set SWDIO direction
out pc, 5 ; Go to command routine
read_bitloop:
nop ; Additional delay on taken loop branch
public read_cmd:
in pins, 1 [1] side 0x3 ; Data is captured by host on posedge
jmp x-- read_bitloop side 0x1
push
.wrap ; Wrap to next command
; Implement probe_gpio_init() and probe_sm_init() methods here - set pins, offsets, sidesets etc
% c-sdk {
static inline void probe_gpio_init()
{
#if defined(PROBE_PIN_RESET)
// Target reset pin: pull up, input to emulate open drain pin
gpio_pull_up(PROBE_PIN_RESET);
// gpio_init will leave the pin cleared and set as input
gpio_init(PROBE_PIN_RESET);
#endif
// Funcsel pins
pio_gpio_init(pio0, PROBE_PIN_SWDIOEN);
pio_gpio_init(pio0, PROBE_PIN_SWCLK);
pio_gpio_init(pio0, PROBE_PIN_SWDIO);
// Make sure SWDIO has a pullup on it. Idle state is high
gpio_pull_up(PROBE_PIN_SWDIO);
gpio_pull_up(PROBE_PIN_SWDIOEN);
}
static inline void probe_sm_init(pio_sm_config* sm_config) {
// Set SWDIOEN and SWCLK as sideset pins
sm_config_set_sideset_pins(sm_config, PROBE_PIN_SWDIOEN);
// Set SWDIO offset
sm_config_set_out_pins(sm_config, PROBE_PIN_SWDIO, 1);
sm_config_set_set_pins(sm_config, PROBE_PIN_SWDIO, 1);
sm_config_set_in_pins(sm_config, PROBE_PIN_SWDI);
// Set SWDIOEN, SWD and SWDIO pins as output to start. This will be set in the sm
pio_sm_set_consecutive_pindirs(pio0, PROBE_SM, PROBE_PIN_OFFSET, 3, true);
// shift output right, autopull off, autopull threshold
sm_config_set_out_shift(sm_config, true, false, 0);
// shift input right as swd data is lsb first, autopush off
sm_config_set_in_shift(sm_config, true, false, 0);
}
%}

View File

@@ -133,6 +133,8 @@ uint8_t SWD_Transfer (uint32_t request, uint32_t *data) {
probe_write_bits(8, prq);
/* Turnaround (ignore read bits) */
probe_read_mode();
ack = probe_read_bits(DAP_Data.swd_conf.turnaround + 3);
ack >>= DAP_Data.swd_conf.turnaround;
@@ -152,10 +154,12 @@ uint8_t SWD_Transfer (uint32_t request, uint32_t *data) {
picoprobe_debug("Read %02x ack %02x 0x%08x parity %01x\n",
prq, ack, val, bit);
/* Turnaround for line idle */
probe_hiz_clocks(DAP_Data.swd_conf.turnaround);
probe_read_bits(DAP_Data.swd_conf.turnaround);
probe_write_mode();
} else {
/* Turnaround for write */
probe_hiz_clocks(DAP_Data.swd_conf.turnaround);
probe_read_bits(DAP_Data.swd_conf.turnaround);
probe_write_mode();
/* Write WDATA[0:31] */
val = *data;
@@ -174,9 +178,9 @@ uint8_t SWD_Transfer (uint32_t request, uint32_t *data) {
/* Idle cycles - drive 0 for N clocks */
if (DAP_Data.transfer.idle_cycles) {
for (n = DAP_Data.transfer.idle_cycles; n; ) {
if (n > 256) {
probe_write_bits(256, 0);
n -= 256;
if (n > 32) {
probe_write_bits(32, 0);
n -= 32;
} else {
probe_write_bits(n, 0);
n -= n;
@@ -191,7 +195,8 @@ uint8_t SWD_Transfer (uint32_t request, uint32_t *data) {
/* Dummy Read RDATA[0:31] + Parity */
probe_read_bits(33);
}
probe_hiz_clocks(DAP_Data.swd_conf.turnaround);
probe_read_bits(DAP_Data.swd_conf.turnaround);
probe_write_mode();
if (DAP_Data.swd_conf.data_phase && ((request & DAP_TRANSFER_RnW) == 0U)) {
/* Dummy Write WDATA[0:31] + Parity */
probe_write_bits(32, 0);
@@ -204,6 +209,7 @@ uint8_t SWD_Transfer (uint32_t request, uint32_t *data) {
n = DAP_Data.swd_conf.turnaround + 32U + 1U;
/* Back off data phase */
probe_read_bits(n);
probe_write_mode();
return ((uint8_t)ack);
}

View File

@@ -68,23 +68,12 @@
#define CFG_TUD_MIDI 0
#define CFG_TUD_VENDOR 1
/*
* TX bufsize (actually UART RX) is oversized because the Windows CDC-ACM
* driver submits a grand total of _one_ URB at any one time.
* This means the application must consume the data before the next IN token
* is issued. At high datarates this leads to huge variation in instantaneous
* throughput on USB, so a large runway is needed.
*/
#define CFG_TUD_CDC_RX_BUFSIZE 128
#define CFG_TUD_CDC_TX_BUFSIZE 4096
#define CFG_TUD_CDC_RX_BUFSIZE 64
#define CFG_TUD_CDC_TX_BUFSIZE 64
#define CFG_TUD_VENDOR_RX_BUFSIZE 8192
#define CFG_TUD_VENDOR_TX_BUFSIZE 8192
#ifndef TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX
#define TUD_OPT_RP2040_USB_DEVICE_UFRAME_FIX 1
#endif
#ifdef __cplusplus
}
#endif

View File

@@ -1,218 +0,0 @@
/**
* Copyright (c) 2023 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "tusb_edpt_handler.h"
#include "DAP.h"
static uint8_t itf_num;
static uint8_t _rhport;
volatile uint32_t _resp_len;
uint8_t _out_ep_addr;
uint8_t _in_ep_addr;
buffer_t USBRequestBuffer;
buffer_t USBResponseBuffer;
void dap_edpt_init(void) {
}
void dap_edpt_reset(uint8_t __unused rhport)
{
itf_num = 0;
}
uint16_t dap_edpt_open(uint8_t __unused rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
TU_VERIFY(TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass &&
PICOPROBE_INTERFACE_SUBCLASS == itf_desc->bInterfaceSubClass &&
PICOPROBE_INTERFACE_PROTOCOL == itf_desc->bInterfaceProtocol, 0);
// Initialise circular buffer indices
USBResponseBuffer.packet_wr_idx = 0;
USBResponseBuffer.packet_rd_idx = 0;
USBRequestBuffer.packet_wr_idx = 0;
USBRequestBuffer.packet_rd_idx = 0;
// Initialse full/empty flags
USBResponseBuffer.wasFull = false;
USBResponseBuffer.wasEmpty = true;
USBRequestBuffer.wasFull = false;
USBRequestBuffer.wasEmpty = true;
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + (itf_desc->bNumEndpoints * sizeof(tusb_desc_endpoint_t));
TU_VERIFY(max_len >= drv_len, 0);
itf_num = itf_desc->bInterfaceNumber;
// Initialising the OUT endpoint
tusb_desc_endpoint_t *edpt_desc = (tusb_desc_endpoint_t *) (itf_desc + 1);
uint8_t ep_addr = edpt_desc->bEndpointAddress;
_out_ep_addr = ep_addr;
// The OUT endpoint requires a call to usbd_edpt_xfer to initialise the endpoint, giving tinyUSB a buffer to consume when a transfer occurs at the endpoint
usbd_edpt_open(rhport, edpt_desc);
usbd_edpt_xfer(rhport, ep_addr, &(USBRequestBuffer.data[USBRequestBuffer.packet_wr_idx][0]), DAP_PACKET_SIZE);
// Initiliasing the IN endpoint
edpt_desc++;
ep_addr = edpt_desc->bEndpointAddress;
_in_ep_addr = ep_addr;
// The IN endpoint doesn't need a transfer to initialise it, as this will be done by the main loop of dap_thread
usbd_edpt_open(rhport, edpt_desc);
return drv_len;
}
bool dap_edpt_control_xfer_cb(uint8_t __unused rhport, uint8_t stage, tusb_control_request_t const *request)
{
return false;
}
// Manage USBResponseBuffer (request) write and USBRequestBuffer (response) read indices
bool dap_edpt_xfer_cb(uint8_t __unused rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
const uint8_t ep_dir = tu_edpt_dir(ep_addr);
if(ep_dir == TUSB_DIR_IN)
{
if(xferred_bytes >= 0u && xferred_bytes <= DAP_PACKET_SIZE)
{
USBResponseBuffer.packet_rd_idx = (USBResponseBuffer.packet_rd_idx + 1) % DAP_PACKET_COUNT;
// This checks that the buffer was not empty in DAP thread, which means the next buffer was not queued up for the in endpoint callback
// So, queue up the buffer at the new read index, since we expect read to catch up to write at this point.
// It is possible for the read index to be multiple spaces behind the write index (if the USB callbacks are lagging behind dap thread),
// so we account for this by only setting wasEmpty to true if the next callback will empty the buffer
if(!USBResponseBuffer.wasEmpty)
{
usbd_edpt_xfer(rhport, ep_addr, &(USBResponseBuffer.data[USBResponseBuffer.packet_rd_idx][0]), (uint16_t) _resp_len);
USBResponseBuffer.wasEmpty = ((USBResponseBuffer.packet_rd_idx + 1) % DAP_PACKET_COUNT == USBResponseBuffer.packet_wr_idx);
}
// Wake up DAP thread after processing the callback
vTaskResume(dap_taskhandle);
return true;
}
return false;
} else if(ep_dir == TUSB_DIR_OUT) {
if(xferred_bytes >= 0u && xferred_bytes <= DAP_PACKET_SIZE)
{
// Only queue the next buffer in the out callback if the buffer is not full
// If full, we set the wasFull flag, which will be checked by dap thread
if(!buffer_full(&USBRequestBuffer))
{
USBRequestBuffer.packet_wr_idx = (USBRequestBuffer.packet_wr_idx + 1) % DAP_PACKET_COUNT;
usbd_edpt_xfer(rhport, ep_addr, &(USBRequestBuffer.data[USBRequestBuffer.packet_wr_idx][0]), DAP_PACKET_SIZE);
USBRequestBuffer.wasFull = false;
}
else {
USBRequestBuffer.wasFull = true;
}
// Wake up DAP thread after processing the callback
vTaskResume(dap_taskhandle);
return true;
}
return false;
}
else return false;
}
void dap_thread(void *ptr)
{
uint8_t DAPRequestBuffer[DAP_PACKET_SIZE];
uint8_t DAPResponseBuffer[DAP_PACKET_SIZE];
do
{
while(USBRequestBuffer.packet_rd_idx != USBRequestBuffer.packet_wr_idx)
{
// Read a single packet from the USB buffer into the DAP Request buffer
memcpy(DAPRequestBuffer, &(USBRequestBuffer.data[USBRequestBuffer.packet_rd_idx]), DAP_PACKET_SIZE);
USBRequestBuffer.packet_rd_idx = (USBRequestBuffer.packet_rd_idx + 1) % DAP_PACKET_COUNT;
// If the buffer was full in the out callback, we need to queue up another buffer for the endpoint to consume, now that we know there is space in the buffer.
if(USBRequestBuffer.wasFull)
{
vTaskSuspendAll(); // Suspend the scheduler to safely update the write index
USBRequestBuffer.packet_wr_idx = (USBRequestBuffer.packet_wr_idx + 1) % DAP_PACKET_COUNT;
usbd_edpt_xfer(_rhport, _out_ep_addr, &(USBRequestBuffer.data[USBRequestBuffer.packet_wr_idx][0]), DAP_PACKET_SIZE);
USBRequestBuffer.wasFull = false;
xTaskResumeAll();
}
_resp_len = DAP_ProcessCommand(DAPRequestBuffer, DAPResponseBuffer);
// Suspend the scheduler to avoid stale values/race conditions between threads
vTaskSuspendAll();
if(buffer_empty(&USBResponseBuffer))
{
memcpy(&(USBResponseBuffer.data[USBResponseBuffer.packet_wr_idx]), DAPResponseBuffer, (uint16_t) _resp_len);
USBResponseBuffer.packet_wr_idx = (USBResponseBuffer.packet_wr_idx + 1) % DAP_PACKET_COUNT;
usbd_edpt_xfer(_rhport, _in_ep_addr, &(USBResponseBuffer.data[USBResponseBuffer.packet_rd_idx][0]), (uint16_t) _resp_len);
} else {
memcpy(&(USBResponseBuffer.data[USBResponseBuffer.packet_wr_idx]), DAPResponseBuffer, (uint16_t) _resp_len);
USBResponseBuffer.packet_wr_idx = (USBResponseBuffer.packet_wr_idx + 1) % DAP_PACKET_COUNT;
// The In callback needs to check this flag to know when to queue up the next buffer.
USBResponseBuffer.wasEmpty = false;
}
xTaskResumeAll();
}
// Suspend DAP thread until it is awoken by a USB thread callback
vTaskSuspend(dap_taskhandle);
} while (1);
}
usbd_class_driver_t const _dap_edpt_driver =
{
.init = dap_edpt_init,
.reset = dap_edpt_reset,
.open = dap_edpt_open,
.control_xfer_cb = dap_edpt_control_xfer_cb,
.xfer_cb = dap_edpt_xfer_cb,
.sof = NULL,
#if CFG_TUSB_DEBUG >= 2
.name = "PICOPROBE ENDPOINT"
#endif
};
// Add the custom driver to the tinyUSB stack
usbd_class_driver_t const *usbd_app_driver_get_cb(uint8_t *driver_count)
{
*driver_count = 1;
return &_dap_edpt_driver;
}
bool buffer_full(buffer_t *buffer)
{
return ((buffer->packet_wr_idx + 1) % DAP_PACKET_COUNT == buffer->packet_rd_idx);
}
bool buffer_empty(buffer_t *buffer)
{
return (buffer->packet_wr_idx == buffer->packet_rd_idx);
}

View File

@@ -1,41 +0,0 @@
/**
* Copyright (c) 2023 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef TUSB_EDPT_HANDLER_H
#define TUSB_EDPT_HANDLER_H
#include "tusb.h"
#include "device/usbd_pvt.h"
#include "DAP_config.h"
#define PICOPROBE_INTERFACE_SUBCLASS 0x00
#define PICOPROBE_INTERFACE_PROTOCOL 0x00
typedef struct {
uint8_t data[DAP_PACKET_COUNT][DAP_PACKET_SIZE];
volatile uint32_t packet_wr_idx;
volatile uint32_t packet_rd_idx;
volatile bool wasEmpty;
volatile bool wasFull;
} buffer_t;
extern TaskHandle_t dap_taskhandle, tud_taskhandle;
/* Main DAP loop */
void dap_thread(void *ptr);
/* Endpoint Handling */
void picoprobe_edpt_init(void);
uint16_t picoprobe_edpt_open(uint8_t __unused rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
bool picoprobe_edpt_control_xfer_cb(uint8_t __unused rhport, uint8_t stage, tusb_control_request_t const *request);
bool picoprobe_edpt_xfer_cb(uint8_t __unused rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
/* Helper Functions */
bool buffer_full(buffer_t *buffer);
bool buffer_empty(buffer_t *buffer);
#endif

View File

@@ -47,8 +47,12 @@ tusb_desc_device_t const desc_device =
.bMaxPacketSize0 = CFG_TUD_ENDPOINT0_SIZE,
.idVendor = 0x2E8A, // Pi
.idProduct = 0x000c, // CMSIS-DAP Debug Probe
.bcdDevice = 0x0103, // Version 01.03
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_OPENOCD_CUSTOM)
.idProduct = 0x0004, // Picoprobe
#else
.idProduct = 0x000c, // CMSIS-DAP adapter
#endif
.bcdDevice = 0x0101, // Version 01.01
.iManufacturer = 0x01,
.iProduct = 0x02,
.iSerialNumber = 0x03,
@@ -99,7 +103,7 @@ uint8_t const * tud_hid_descriptor_report_cb(uint8_t itf)
uint8_t const desc_configuration[] =
{
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, 0, 100),
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
// Interface 0
#if (PICOPROBE_DEBUG_PROTOCOL == PROTO_DAP_V1)
// HID (named interface)
@@ -133,11 +137,11 @@ char const* string_desc_arr [] =
{
(const char[]) { 0x09, 0x04 }, // 0: is supported language is English (0x0409)
"Raspberry Pi", // 1: Manufacturer
PROBE_PRODUCT_STRING, // 2: Product
"Picoprobe CMSIS-DAP", // 2: Product
usb_serial, // 3: Serial, uses flash unique ID
"CMSIS-DAP v1 Interface", // 4: Interface descriptor for HID transport
"CMSIS-DAP v2 Interface", // 5: Interface descriptor for Bulk transport
"CDC-ACM UART Interface", // 6: Interface descriptor for CDC
"Picoprobe CMSIS-DAP v1", // 4: Interface descriptor for HID transport
"Picoprobe CMSIS-DAP v2", // 5: Interface descriptor for Bulk transport
"Picoprobe CDC-ACM UART", // 6: Interface descriptor for CDC
};
static uint16_t _desc_str[32];
@@ -242,4 +246,4 @@ TU_VERIFY_STATIC(sizeof(desc_ms_os_20) == MS_OS_20_DESC_LEN, "Incorrect size");
uint8_t const * tud_descriptor_bos_cb(void)
{
return desc_bos;
}
}