Compare commits

..

13 Commits

Author SHA1 Message Date
Jonathan Bell
2eeef92b89 submodules: delete CMSIS_5 from the repository
See https://github.com/raspberrypi/pico-setup/issues/57

Clones of debugprobe or invocations of pico-setup.sh frequently
encounter errors relating to bandwidth budgets. These sporadic errors
are due to the large size of the CMSIS_5 repo clone exhausting the
bandwidth quotas on Github, so drop this in favour of a downstream copy
of the relevant CMSIS-DAP firmware files.

Users are advised to delete and regenerate the build directory.

Optionally, reclaim filesystem space by removing .git/modules/CMSIS_5
and all subdirectories.
2025-07-07 11:52:26 +01:00
Jonathan Bell
8a0c487df3 CMakelists.txt: use downstream copies of CMSIS_5 files
This change will require re-running cmake in the build directory.
2025-07-07 11:52:26 +01:00
Jonathan Bell
2a421d1648 Add downstream copies of CMSIS_5 files relevant to CMSIS-DAP firmware
From tag v2.0.0. Not used in the project yet.
2025-07-07 11:52:08 +01:00
Jonathan Bell
61eae8217c Remove spurious file 2025-05-14 14:50:22 +01:00
Jonathan Bell
aa17d6d982 probe: correct SWCLK calculations
Use the actual clk_sys frequency and Round divisors up, otherwise high
swclk speeds get significantly overclocked.
2025-05-14 14:16:56 +01:00
graham sanderson
a7b796d5e6 Revert "Fix variable pathname spacing"
This reverts commit 1abda4c329.
2025-05-14 13:15:45 +01:00
P33M
3a356ea346 Update README.md 2025-03-27 15:53:56 +00:00
Jonathan Bell
c70815a297 Debugprobe release v2.2.2
Point release to address high uart TX baud rate corruption, at the
expense of throughput.

Also skip over an attempt at UART/SDK optimisation that caused issues
for users.
2025-03-13 16:36:24 +00:00
Jonathan Bell
f601757084 Revert "cdc_uart: performance optimisations"
This reverts commit 83e28db1d3.
2025-03-13 11:11:27 +00:00
TankedThomas
1abda4c329 Fix variable pathname spacing
Signed-off-by: TankedThomas <TankedThomas@users.noreply.github.com>
2025-03-11 09:50:23 +00:00
Jonathan Bell
83e28db1d3 cdc_uart: performance optimisations
For RX, do burst reads without the SDK wrapper function which checks
the FIFO flags for each read.

For TX, avoid waiting for the FIFO to have space available, which
causes significant thread stalls. Use a slightly pessimistic estimate
of the number of bytes the TX FIFO should consume and only write up to
that number.

Also, there's no point tracking whether or not the scheduler parked the
thread in a call to xTaskDelayUntil - missing a scheduler tick can't be
recovered from.
2025-01-17 15:14:06 +00:00
Jonathan Bell
3d58384754 cdc_uart: work around suspected TinyUSB FIFO bug
UART TX corruption has been observed at high baud rates. It seems to be
related to thread preemption when a buffer is pushed to the CDC FIFO
while another task is reading/updating FIFO pointers.

If set to 1x wMaxPacket bytes, the FIFO push only occurs when it is
completely empty. This avoids the bug at the cost of some amount of
throughput, usually 1-2 USB packet times plus inter-packet delay.
2025-01-17 15:03:02 +00:00
Jonathan Bell
818ed79f4b Fixes for #160 and #159 2025-01-09 16:34:30 +00:00
56 changed files with 52586 additions and 19 deletions

3
.gitmodules vendored
View File

@@ -1,6 +1,3 @@
[submodule "CMSIS_5"]
path = CMSIS_5
url = https://github.com/ARM-software/CMSIS_5
[submodule "freertos"]
path = freertos
url = https://github.com/FreeRTOS/FreeRTOS-Kernel

Submodule CMSIS_5 deleted from a65b7c9a3e

View File

@@ -0,0 +1,411 @@
/******************************************************************************
* @file cachel1_armv7.h
* @brief CMSIS Level 1 Cache API for Armv7-M and later
* @version V1.0.0
* @date 03. March 2020
******************************************************************************/
/*
* Copyright (c) 2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_CACHEL1_ARMV7_H
#define ARM_CACHEL1_ARMV7_H
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_CacheFunctions Cache Functions
\brief Functions that configure Instruction and Data cache.
@{
*/
/* Cache Size ID Register Macros */
#define CCSIDR_WAYS(x) (((x) & SCB_CCSIDR_ASSOCIATIVITY_Msk) >> SCB_CCSIDR_ASSOCIATIVITY_Pos)
#define CCSIDR_SETS(x) (((x) & SCB_CCSIDR_NUMSETS_Msk ) >> SCB_CCSIDR_NUMSETS_Pos )
#ifndef __SCB_DCACHE_LINE_SIZE
#define __SCB_DCACHE_LINE_SIZE 32U /*!< Cortex-M7 cache line size is fixed to 32 bytes (8 words). See also register SCB_CCSIDR */
#endif
#ifndef __SCB_ICACHE_LINE_SIZE
#define __SCB_ICACHE_LINE_SIZE 32U /*!< Cortex-M7 cache line size is fixed to 32 bytes (8 words). See also register SCB_CCSIDR */
#endif
/**
\brief Enable I-Cache
\details Turns on I-Cache
*/
__STATIC_FORCEINLINE void SCB_EnableICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
if (SCB->CCR & SCB_CCR_IC_Msk) return; /* return if ICache is already enabled */
__DSB();
__ISB();
SCB->ICIALLU = 0UL; /* invalidate I-Cache */
__DSB();
__ISB();
SCB->CCR |= (uint32_t)SCB_CCR_IC_Msk; /* enable I-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Disable I-Cache
\details Turns off I-Cache
*/
__STATIC_FORCEINLINE void SCB_DisableICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
__DSB();
__ISB();
SCB->CCR &= ~(uint32_t)SCB_CCR_IC_Msk; /* disable I-Cache */
SCB->ICIALLU = 0UL; /* invalidate I-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Invalidate I-Cache
\details Invalidates I-Cache
*/
__STATIC_FORCEINLINE void SCB_InvalidateICache (void)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
__DSB();
__ISB();
SCB->ICIALLU = 0UL;
__DSB();
__ISB();
#endif
}
/**
\brief I-Cache Invalidate by address
\details Invalidates I-Cache for the given address.
I-Cache is invalidated starting from a 32 byte aligned address in 32 byte granularity.
I-Cache memory blocks which are part of given address + given size are invalidated.
\param[in] addr address
\param[in] isize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_InvalidateICache_by_Addr (void *addr, int32_t isize)
{
#if defined (__ICACHE_PRESENT) && (__ICACHE_PRESENT == 1U)
if ( isize > 0 ) {
int32_t op_size = isize + (((uint32_t)addr) & (__SCB_ICACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_ICACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->ICIMVAU = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_ICACHE_LINE_SIZE;
op_size -= __SCB_ICACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief Enable D-Cache
\details Turns on D-Cache
*/
__STATIC_FORCEINLINE void SCB_EnableDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
if (SCB->CCR & SCB_CCR_DC_Msk) return; /* return if DCache is already enabled */
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCISW = (((sets << SCB_DCISW_SET_Pos) & SCB_DCISW_SET_Msk) |
((ways << SCB_DCISW_WAY_Pos) & SCB_DCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
SCB->CCR |= (uint32_t)SCB_CCR_DC_Msk; /* enable D-Cache */
__DSB();
__ISB();
#endif
}
/**
\brief Disable D-Cache
\details Turns off D-Cache
*/
__STATIC_FORCEINLINE void SCB_DisableDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
SCB->CCR &= ~(uint32_t)SCB_CCR_DC_Msk; /* disable D-Cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean & invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCISW = (((sets << SCB_DCCISW_SET_Pos) & SCB_DCCISW_SET_Msk) |
((ways << SCB_DCCISW_WAY_Pos) & SCB_DCCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Invalidate D-Cache
\details Invalidates D-Cache
*/
__STATIC_FORCEINLINE void SCB_InvalidateDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCISW = (((sets << SCB_DCISW_SET_Pos) & SCB_DCISW_SET_Msk) |
((ways << SCB_DCISW_WAY_Pos) & SCB_DCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Clean D-Cache
\details Cleans D-Cache
*/
__STATIC_FORCEINLINE void SCB_CleanDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCSW = (((sets << SCB_DCCSW_SET_Pos) & SCB_DCCSW_SET_Msk) |
((ways << SCB_DCCSW_WAY_Pos) & SCB_DCCSW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief Clean & Invalidate D-Cache
\details Cleans and Invalidates D-Cache
*/
__STATIC_FORCEINLINE void SCB_CleanInvalidateDCache (void)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
uint32_t ccsidr;
uint32_t sets;
uint32_t ways;
SCB->CSSELR = 0U; /* select Level 1 data cache */
__DSB();
ccsidr = SCB->CCSIDR;
/* clean & invalidate D-Cache */
sets = (uint32_t)(CCSIDR_SETS(ccsidr));
do {
ways = (uint32_t)(CCSIDR_WAYS(ccsidr));
do {
SCB->DCCISW = (((sets << SCB_DCCISW_SET_Pos) & SCB_DCCISW_SET_Msk) |
((ways << SCB_DCCISW_WAY_Pos) & SCB_DCCISW_WAY_Msk) );
#if defined ( __CC_ARM )
__schedule_barrier();
#endif
} while (ways-- != 0U);
} while(sets-- != 0U);
__DSB();
__ISB();
#endif
}
/**
\brief D-Cache Invalidate by address
\details Invalidates D-Cache for the given address.
D-Cache is invalidated starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are invalidated.
\param[in] addr address
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_InvalidateDCache_by_Addr (void *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCIMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief D-Cache Clean by address
\details Cleans D-Cache for the given address
D-Cache is cleaned starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are cleaned.
\param[in] addr address
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_CleanDCache_by_Addr (uint32_t *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCCMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/**
\brief D-Cache Clean and Invalidate by address
\details Cleans and invalidates D_Cache for the given address
D-Cache is cleaned and invalidated starting from a 32 byte aligned address in 32 byte granularity.
D-Cache memory blocks which are part of given address + given size are cleaned and invalidated.
\param[in] addr address (aligned to 32-byte boundary)
\param[in] dsize size of memory block (in number of bytes)
*/
__STATIC_FORCEINLINE void SCB_CleanInvalidateDCache_by_Addr (uint32_t *addr, int32_t dsize)
{
#if defined (__DCACHE_PRESENT) && (__DCACHE_PRESENT == 1U)
if ( dsize > 0 ) {
int32_t op_size = dsize + (((uint32_t)addr) & (__SCB_DCACHE_LINE_SIZE - 1U));
uint32_t op_addr = (uint32_t)addr /* & ~(__SCB_DCACHE_LINE_SIZE - 1U) */;
__DSB();
do {
SCB->DCCIMVAC = op_addr; /* register accepts only 32byte aligned values, only bits 31..5 are valid */
op_addr += __SCB_DCACHE_LINE_SIZE;
op_size -= __SCB_DCACHE_LINE_SIZE;
} while ( op_size > 0 );
__DSB();
__ISB();
}
#endif
}
/*@} end of CMSIS_Core_CacheFunctions */
#endif /* ARM_CACHEL1_ARMV7_H */

View File

@@ -0,0 +1,885 @@
/**************************************************************************//**
* @file cmsis_armcc.h
* @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
* @version V5.2.1
* @date 26. March 2020
******************************************************************************/
/*
* Copyright (c) 2009-2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_ARMCC_H
#define __CMSIS_ARMCC_H
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
#error "Please use Arm Compiler Toolchain V4.0.677 or later!"
#endif
/* CMSIS compiler control architecture macros */
#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \
(defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) )
#define __ARM_ARCH_6M__ 1
#endif
#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1))
#define __ARM_ARCH_7M__ 1
#endif
#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
#define __ARM_ARCH_7EM__ 1
#endif
/* __ARM_ARCH_8M_BASE__ not applicable */
/* __ARM_ARCH_8M_MAIN__ not applicable */
/* __ARM_ARCH_8_1M_MAIN__ not applicable */
/* CMSIS compiler control DSP macros */
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __ARM_FEATURE_DSP 1
#endif
/* CMSIS compiler specific defines */
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE __inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static __inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE static __forceinline
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __declspec(noreturn)
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT __packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION __packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
#define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
#define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __memory_changed()
#endif
/* ######################### Startup and Lowlevel Init ######################## */
#ifndef __PROGRAM_START
#define __PROGRAM_START __main
#endif
#ifndef __INITIAL_SP
#define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit
#endif
#ifndef __STACK_LIMIT
#define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base
#endif
#ifndef __VECTOR_TABLE
#define __VECTOR_TABLE __Vectors
#endif
#ifndef __VECTOR_TABLE_ATTRIBUTE
#define __VECTOR_TABLE_ATTRIBUTE __attribute__((used, section("RESET")))
#endif
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
/**
\brief Enable IRQ Interrupts
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __enable_irq(); */
/**
\brief Disable IRQ Interrupts
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
/* intrinsic void __disable_irq(); */
/**
\brief Get Control Register
\details Returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/**
\brief Set Control Register
\details Writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
/**
\brief Get IPSR Register
\details Returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/**
\brief Get APSR Register
\details Returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/**
\brief Get xPSR Register
\details Returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/**
\brief Get Process Stack Pointer
\details Returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/**
\brief Set Process Stack Pointer
\details Assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/**
\brief Get Main Stack Pointer
\details Returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/**
\brief Set Main Stack Pointer
\details Assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/**
\brief Get Priority Mask
\details Returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/**
\brief Set Priority Mask
\details Assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief Enable FIQ
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/**
\brief Disable FIQ
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/**
\brief Get Base Priority
\details Returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/**
\brief Set Base Priority
\details Assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xFFU);
}
/**
\brief Set Base Priority with condition
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
or the new value increases the BASEPRI priority level.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
{
register uint32_t __regBasePriMax __ASM("basepri_max");
__regBasePriMax = (basePri & 0xFFU);
}
/**
\brief Get Fault Mask
\details Returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/**
\brief Set Fault Mask
\details Assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1U);
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Get FPSCR
\details Returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0U);
#endif
}
/**
\brief Set FPSCR
\details Assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#else
(void)fpscr;
#endif
}
/*@} end of CMSIS_Core_RegAccFunctions */
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
/**
\brief No Operation
\details No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/**
\brief Wait For Interrupt
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
*/
#define __WFI __wfi
/**
\brief Wait For Event
\details Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/**
\brief Send Event
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/**
\brief Instruction Synchronization Barrier
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or memory,
after the instruction has been completed.
*/
#define __ISB() __isb(0xF)
/**
\brief Data Synchronization Barrier
\details Acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() __dsb(0xF)
/**
\brief Data Memory Barrier
\details Ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() __dmb(0xF)
/**
\brief Reverse byte order (32 bit)
\details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/**
\brief Reverse byte order (16 bit)
\details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
{
revsh r0, r0
bx lr
}
#endif
/**
\brief Rotate Right in unsigned value (32 bit)
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] op1 Value to rotate
\param [in] op2 Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/**
\brief Breakpoint
\details Causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
/**
\brief Reverse bit order of value
\details Reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __RBIT __rbit
#else
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
result = value; /* r will be reversed bits of v; first get LSB of v */
for (value >>= 1U; value != 0U; value >>= 1U)
{
result <<= 1U;
result |= value & 1U;
s--;
}
result <<= s; /* shift when v's highest bits are zero */
return result;
}
#endif
/**
\brief Count leading zeros
\details Counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
/**
\brief LDR Exclusive (8 bit)
\details Executes a exclusive LDR instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
#else
#define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (16 bit)
\details Executes a exclusive LDR instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
#else
#define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief LDR Exclusive (32 bit)
\details Executes a exclusive LDR instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
#else
#define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
#endif
/**
\brief STR Exclusive (8 bit)
\details Executes a exclusive STR instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXB(value, ptr) __strex(value, ptr)
#else
#define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (16 bit)
\details Executes a exclusive STR instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXH(value, ptr) __strex(value, ptr)
#else
#define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief STR Exclusive (32 bit)
\details Executes a exclusive STR instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
#define __STREXW(value, ptr) __strex(value, ptr)
#else
#define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
#endif
/**
\brief Remove the exclusive lock
\details Removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/**
\brief Rotate Right with Extend (32 bit)
\details Moves each bit of a bitstring right by one bit.
The carry input is shifted in at the left end of the bitstring.
\param [in] value Value to rotate
\return Rotated value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
{
rrx r0, r0
bx lr
}
#endif
/**
\brief LDRT Unprivileged (8 bit)
\details Executes a Unprivileged LDRT instruction for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
/**
\brief LDRT Unprivileged (16 bit)
\details Executes a Unprivileged LDRT instruction for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
/**
\brief LDRT Unprivileged (32 bit)
\details Executes a Unprivileged LDRT instruction for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
/**
\brief STRT Unprivileged (8 bit)
\details Executes a Unprivileged STRT instruction for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRBT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (16 bit)
\details Executes a Unprivileged STRT instruction for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRHT(value, ptr) __strt(value, ptr)
/**
\brief STRT Unprivileged (32 bit)
\details Executes a Unprivileged STRT instruction for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
*/
#define __STRT(value, ptr) __strt(value, ptr)
#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/**
\brief Signed Saturate
\details Saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
/**
\brief Unsigned Saturate
\details Saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
(defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32U) ) >> 32U))
#define __SXTB16_RORn(ARG1, ARG2) __SXTB16(__ROR(ARG1, ARG2))
#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
/*@} end of group CMSIS_SIMD_intrinsics */
#endif /* __CMSIS_ARMCC_H */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,283 @@
/**************************************************************************//**
* @file cmsis_compiler.h
* @brief CMSIS compiler generic header file
* @version V5.1.0
* @date 09. October 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __CMSIS_COMPILER_H
#define __CMSIS_COMPILER_H
#include <stdint.h>
/*
* Arm Compiler 4/5
*/
#if defined ( __CC_ARM )
#include "cmsis_armcc.h"
/*
* Arm Compiler 6.6 LTM (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100)
#include "cmsis_armclang_ltm.h"
/*
* Arm Compiler above 6.10.1 (armclang)
*/
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100)
#include "cmsis_armclang.h"
/*
* GNU Compiler
*/
#elif defined ( __GNUC__ )
#include "cmsis_gcc.h"
/*
* IAR Compiler
*/
#elif defined ( __ICCARM__ )
#include <cmsis_iccarm.h>
/*
* TI Arm Compiler
*/
#elif defined ( __TI_ARM__ )
#include <cmsis_ccs.h>
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __attribute__((packed))
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __attribute__((packed))
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __attribute__((packed))
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __attribute__((packed)) T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __attribute__((aligned(x)))
#endif
#ifndef __RESTRICT
#define __RESTRICT __restrict
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* TASKING Compiler
*/
#elif defined ( __TASKING__ )
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
#define __NO_RETURN __attribute__((noreturn))
#endif
#ifndef __USED
#define __USED __attribute__((used))
#endif
#ifndef __WEAK
#define __WEAK __attribute__((weak))
#endif
#ifndef __PACKED
#define __PACKED __packed__
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT struct __packed__
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION union __packed__
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
struct __packed__ T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#define __ALIGNED(x) __align(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
/*
* COSMIC Compiler
*/
#elif defined ( __CSMC__ )
#include <cmsis_csm.h>
#ifndef __ASM
#define __ASM _asm
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __STATIC_INLINE
#endif
#ifndef __NO_RETURN
// NO RETURN is automatically detected hence no warning here
#define __NO_RETURN
#endif
#ifndef __USED
#warning No compiler specific solution for __USED. __USED is ignored.
#define __USED
#endif
#ifndef __WEAK
#define __WEAK __weak
#endif
#ifndef __PACKED
#define __PACKED @packed
#endif
#ifndef __PACKED_STRUCT
#define __PACKED_STRUCT @packed struct
#endif
#ifndef __PACKED_UNION
#define __PACKED_UNION @packed union
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
@packed struct T_UINT32 { uint32_t v; };
#define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
__PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
#define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT16_READ
__PACKED_STRUCT T_UINT16_READ { uint16_t v; };
#define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
__PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
#define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
#endif
#ifndef __UNALIGNED_UINT32_READ
__PACKED_STRUCT T_UINT32_READ { uint32_t v; };
#define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
#endif
#ifndef __ALIGNED
#warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#ifndef __RESTRICT
#warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
#define __RESTRICT
#endif
#ifndef __COMPILER_BARRIER
#warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored.
#define __COMPILER_BARRIER() (void)0
#endif
#else
#error Unknown compiler.
#endif
#endif /* __CMSIS_COMPILER_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,968 @@
/**************************************************************************//**
* @file cmsis_iccarm.h
* @brief CMSIS compiler ICCARM (IAR Compiler for Arm) header file
* @version V5.2.0
* @date 28. January 2020
******************************************************************************/
//------------------------------------------------------------------------------
//
// Copyright (c) 2017-2019 IAR Systems
// Copyright (c) 2017-2019 Arm Limited. All rights reserved.
//
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License")
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
//------------------------------------------------------------------------------
#ifndef __CMSIS_ICCARM_H__
#define __CMSIS_ICCARM_H__
#ifndef __ICCARM__
#error This file should only be compiled by ICCARM
#endif
#pragma system_include
#define __IAR_FT _Pragma("inline=forced") __intrinsic
#if (__VER__ >= 8000000)
#define __ICCARM_V8 1
#else
#define __ICCARM_V8 0
#endif
#ifndef __ALIGNED
#if __ICCARM_V8
#define __ALIGNED(x) __attribute__((aligned(x)))
#elif (__VER__ >= 7080000)
/* Needs IAR language extensions */
#define __ALIGNED(x) __attribute__((aligned(x)))
#else
#warning No compiler specific solution for __ALIGNED.__ALIGNED is ignored.
#define __ALIGNED(x)
#endif
#endif
/* Define compiler macros for CPU architecture, used in CMSIS 5.
*/
#if __ARM_ARCH_6M__ || __ARM_ARCH_7M__ || __ARM_ARCH_7EM__ || __ARM_ARCH_8M_BASE__ || __ARM_ARCH_8M_MAIN__
/* Macros already defined */
#else
#if defined(__ARM8M_MAINLINE__) || defined(__ARM8EM_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#elif defined(__ARM8M_BASELINE__)
#define __ARM_ARCH_8M_BASE__ 1
#elif defined(__ARM_ARCH_PROFILE) && __ARM_ARCH_PROFILE == 'M'
#if __ARM_ARCH == 6
#define __ARM_ARCH_6M__ 1
#elif __ARM_ARCH == 7
#if __ARM_FEATURE_DSP
#define __ARM_ARCH_7EM__ 1
#else
#define __ARM_ARCH_7M__ 1
#endif
#endif /* __ARM_ARCH */
#endif /* __ARM_ARCH_PROFILE == 'M' */
#endif
/* Alternativ core deduction for older ICCARM's */
#if !defined(__ARM_ARCH_6M__) && !defined(__ARM_ARCH_7M__) && !defined(__ARM_ARCH_7EM__) && \
!defined(__ARM_ARCH_8M_BASE__) && !defined(__ARM_ARCH_8M_MAIN__)
#if defined(__ARM6M__) && (__CORE__ == __ARM6M__)
#define __ARM_ARCH_6M__ 1
#elif defined(__ARM7M__) && (__CORE__ == __ARM7M__)
#define __ARM_ARCH_7M__ 1
#elif defined(__ARM7EM__) && (__CORE__ == __ARM7EM__)
#define __ARM_ARCH_7EM__ 1
#elif defined(__ARM8M_BASELINE__) && (__CORE == __ARM8M_BASELINE__)
#define __ARM_ARCH_8M_BASE__ 1
#elif defined(__ARM8M_MAINLINE__) && (__CORE == __ARM8M_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#elif defined(__ARM8EM_MAINLINE__) && (__CORE == __ARM8EM_MAINLINE__)
#define __ARM_ARCH_8M_MAIN__ 1
#else
#error "Unknown target."
#endif
#endif
#if defined(__ARM_ARCH_6M__) && __ARM_ARCH_6M__==1
#define __IAR_M0_FAMILY 1
#elif defined(__ARM_ARCH_8M_BASE__) && __ARM_ARCH_8M_BASE__==1
#define __IAR_M0_FAMILY 1
#else
#define __IAR_M0_FAMILY 0
#endif
#ifndef __ASM
#define __ASM __asm
#endif
#ifndef __COMPILER_BARRIER
#define __COMPILER_BARRIER() __ASM volatile("":::"memory")
#endif
#ifndef __INLINE
#define __INLINE inline
#endif
#ifndef __NO_RETURN
#if __ICCARM_V8
#define __NO_RETURN __attribute__((__noreturn__))
#else
#define __NO_RETURN _Pragma("object_attribute=__noreturn")
#endif
#endif
#ifndef __PACKED
#if __ICCARM_V8
#define __PACKED __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED __packed
#endif
#endif
#ifndef __PACKED_STRUCT
#if __ICCARM_V8
#define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED_STRUCT __packed struct
#endif
#endif
#ifndef __PACKED_UNION
#if __ICCARM_V8
#define __PACKED_UNION union __attribute__((packed, aligned(1)))
#else
/* Needs IAR language extensions */
#define __PACKED_UNION __packed union
#endif
#endif
#ifndef __RESTRICT
#if __ICCARM_V8
#define __RESTRICT __restrict
#else
/* Needs IAR language extensions */
#define __RESTRICT restrict
#endif
#endif
#ifndef __STATIC_INLINE
#define __STATIC_INLINE static inline
#endif
#ifndef __FORCEINLINE
#define __FORCEINLINE _Pragma("inline=forced")
#endif
#ifndef __STATIC_FORCEINLINE
#define __STATIC_FORCEINLINE __FORCEINLINE __STATIC_INLINE
#endif
#ifndef __UNALIGNED_UINT16_READ
#pragma language=save
#pragma language=extended
__IAR_FT uint16_t __iar_uint16_read(void const *ptr)
{
return *(__packed uint16_t*)(ptr);
}
#pragma language=restore
#define __UNALIGNED_UINT16_READ(PTR) __iar_uint16_read(PTR)
#endif
#ifndef __UNALIGNED_UINT16_WRITE
#pragma language=save
#pragma language=extended
__IAR_FT void __iar_uint16_write(void const *ptr, uint16_t val)
{
*(__packed uint16_t*)(ptr) = val;;
}
#pragma language=restore
#define __UNALIGNED_UINT16_WRITE(PTR,VAL) __iar_uint16_write(PTR,VAL)
#endif
#ifndef __UNALIGNED_UINT32_READ
#pragma language=save
#pragma language=extended
__IAR_FT uint32_t __iar_uint32_read(void const *ptr)
{
return *(__packed uint32_t*)(ptr);
}
#pragma language=restore
#define __UNALIGNED_UINT32_READ(PTR) __iar_uint32_read(PTR)
#endif
#ifndef __UNALIGNED_UINT32_WRITE
#pragma language=save
#pragma language=extended
__IAR_FT void __iar_uint32_write(void const *ptr, uint32_t val)
{
*(__packed uint32_t*)(ptr) = val;;
}
#pragma language=restore
#define __UNALIGNED_UINT32_WRITE(PTR,VAL) __iar_uint32_write(PTR,VAL)
#endif
#ifndef __UNALIGNED_UINT32 /* deprecated */
#pragma language=save
#pragma language=extended
__packed struct __iar_u32 { uint32_t v; };
#pragma language=restore
#define __UNALIGNED_UINT32(PTR) (((struct __iar_u32 *)(PTR))->v)
#endif
#ifndef __USED
#if __ICCARM_V8
#define __USED __attribute__((used))
#else
#define __USED _Pragma("__root")
#endif
#endif
#ifndef __WEAK
#if __ICCARM_V8
#define __WEAK __attribute__((weak))
#else
#define __WEAK _Pragma("__weak")
#endif
#endif
#ifndef __PROGRAM_START
#define __PROGRAM_START __iar_program_start
#endif
#ifndef __INITIAL_SP
#define __INITIAL_SP CSTACK$$Limit
#endif
#ifndef __STACK_LIMIT
#define __STACK_LIMIT CSTACK$$Base
#endif
#ifndef __VECTOR_TABLE
#define __VECTOR_TABLE __vector_table
#endif
#ifndef __VECTOR_TABLE_ATTRIBUTE
#define __VECTOR_TABLE_ATTRIBUTE @".intvec"
#endif
#ifndef __ICCARM_INTRINSICS_VERSION__
#define __ICCARM_INTRINSICS_VERSION__ 0
#endif
#if __ICCARM_INTRINSICS_VERSION__ == 2
#if defined(__CLZ)
#undef __CLZ
#endif
#if defined(__REVSH)
#undef __REVSH
#endif
#if defined(__RBIT)
#undef __RBIT
#endif
#if defined(__SSAT)
#undef __SSAT
#endif
#if defined(__USAT)
#undef __USAT
#endif
#include "iccarm_builtin.h"
#define __disable_fault_irq __iar_builtin_disable_fiq
#define __disable_irq __iar_builtin_disable_interrupt
#define __enable_fault_irq __iar_builtin_enable_fiq
#define __enable_irq __iar_builtin_enable_interrupt
#define __arm_rsr __iar_builtin_rsr
#define __arm_wsr __iar_builtin_wsr
#define __get_APSR() (__arm_rsr("APSR"))
#define __get_BASEPRI() (__arm_rsr("BASEPRI"))
#define __get_CONTROL() (__arm_rsr("CONTROL"))
#define __get_FAULTMASK() (__arm_rsr("FAULTMASK"))
#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) )
#define __get_FPSCR() (__arm_rsr("FPSCR"))
#define __set_FPSCR(VALUE) (__arm_wsr("FPSCR", (VALUE)))
#else
#define __get_FPSCR() ( 0 )
#define __set_FPSCR(VALUE) ((void)VALUE)
#endif
#define __get_IPSR() (__arm_rsr("IPSR"))
#define __get_MSP() (__arm_rsr("MSP"))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
#define __get_MSPLIM() (0U)
#else
#define __get_MSPLIM() (__arm_rsr("MSPLIM"))
#endif
#define __get_PRIMASK() (__arm_rsr("PRIMASK"))
#define __get_PSP() (__arm_rsr("PSP"))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __get_PSPLIM() (0U)
#else
#define __get_PSPLIM() (__arm_rsr("PSPLIM"))
#endif
#define __get_xPSR() (__arm_rsr("xPSR"))
#define __set_BASEPRI(VALUE) (__arm_wsr("BASEPRI", (VALUE)))
#define __set_BASEPRI_MAX(VALUE) (__arm_wsr("BASEPRI_MAX", (VALUE)))
#define __set_CONTROL(VALUE) (__arm_wsr("CONTROL", (VALUE)))
#define __set_FAULTMASK(VALUE) (__arm_wsr("FAULTMASK", (VALUE)))
#define __set_MSP(VALUE) (__arm_wsr("MSP", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
#define __set_MSPLIM(VALUE) ((void)(VALUE))
#else
#define __set_MSPLIM(VALUE) (__arm_wsr("MSPLIM", (VALUE)))
#endif
#define __set_PRIMASK(VALUE) (__arm_wsr("PRIMASK", (VALUE)))
#define __set_PSP(VALUE) (__arm_wsr("PSP", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __set_PSPLIM(VALUE) ((void)(VALUE))
#else
#define __set_PSPLIM(VALUE) (__arm_wsr("PSPLIM", (VALUE)))
#endif
#define __TZ_get_CONTROL_NS() (__arm_rsr("CONTROL_NS"))
#define __TZ_set_CONTROL_NS(VALUE) (__arm_wsr("CONTROL_NS", (VALUE)))
#define __TZ_get_PSP_NS() (__arm_rsr("PSP_NS"))
#define __TZ_set_PSP_NS(VALUE) (__arm_wsr("PSP_NS", (VALUE)))
#define __TZ_get_MSP_NS() (__arm_rsr("MSP_NS"))
#define __TZ_set_MSP_NS(VALUE) (__arm_wsr("MSP_NS", (VALUE)))
#define __TZ_get_SP_NS() (__arm_rsr("SP_NS"))
#define __TZ_set_SP_NS(VALUE) (__arm_wsr("SP_NS", (VALUE)))
#define __TZ_get_PRIMASK_NS() (__arm_rsr("PRIMASK_NS"))
#define __TZ_set_PRIMASK_NS(VALUE) (__arm_wsr("PRIMASK_NS", (VALUE)))
#define __TZ_get_BASEPRI_NS() (__arm_rsr("BASEPRI_NS"))
#define __TZ_set_BASEPRI_NS(VALUE) (__arm_wsr("BASEPRI_NS", (VALUE)))
#define __TZ_get_FAULTMASK_NS() (__arm_rsr("FAULTMASK_NS"))
#define __TZ_set_FAULTMASK_NS(VALUE)(__arm_wsr("FAULTMASK_NS", (VALUE)))
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
#define __TZ_get_PSPLIM_NS() (0U)
#define __TZ_set_PSPLIM_NS(VALUE) ((void)(VALUE))
#else
#define __TZ_get_PSPLIM_NS() (__arm_rsr("PSPLIM_NS"))
#define __TZ_set_PSPLIM_NS(VALUE) (__arm_wsr("PSPLIM_NS", (VALUE)))
#endif
#define __TZ_get_MSPLIM_NS() (__arm_rsr("MSPLIM_NS"))
#define __TZ_set_MSPLIM_NS(VALUE) (__arm_wsr("MSPLIM_NS", (VALUE)))
#define __NOP __iar_builtin_no_operation
#define __CLZ __iar_builtin_CLZ
#define __CLREX __iar_builtin_CLREX
#define __DMB __iar_builtin_DMB
#define __DSB __iar_builtin_DSB
#define __ISB __iar_builtin_ISB
#define __LDREXB __iar_builtin_LDREXB
#define __LDREXH __iar_builtin_LDREXH
#define __LDREXW __iar_builtin_LDREX
#define __RBIT __iar_builtin_RBIT
#define __REV __iar_builtin_REV
#define __REV16 __iar_builtin_REV16
__IAR_FT int16_t __REVSH(int16_t val)
{
return (int16_t) __iar_builtin_REVSH(val);
}
#define __ROR __iar_builtin_ROR
#define __RRX __iar_builtin_RRX
#define __SEV __iar_builtin_SEV
#if !__IAR_M0_FAMILY
#define __SSAT __iar_builtin_SSAT
#endif
#define __STREXB __iar_builtin_STREXB
#define __STREXH __iar_builtin_STREXH
#define __STREXW __iar_builtin_STREX
#if !__IAR_M0_FAMILY
#define __USAT __iar_builtin_USAT
#endif
#define __WFE __iar_builtin_WFE
#define __WFI __iar_builtin_WFI
#if __ARM_MEDIA__
#define __SADD8 __iar_builtin_SADD8
#define __QADD8 __iar_builtin_QADD8
#define __SHADD8 __iar_builtin_SHADD8
#define __UADD8 __iar_builtin_UADD8
#define __UQADD8 __iar_builtin_UQADD8
#define __UHADD8 __iar_builtin_UHADD8
#define __SSUB8 __iar_builtin_SSUB8
#define __QSUB8 __iar_builtin_QSUB8
#define __SHSUB8 __iar_builtin_SHSUB8
#define __USUB8 __iar_builtin_USUB8
#define __UQSUB8 __iar_builtin_UQSUB8
#define __UHSUB8 __iar_builtin_UHSUB8
#define __SADD16 __iar_builtin_SADD16
#define __QADD16 __iar_builtin_QADD16
#define __SHADD16 __iar_builtin_SHADD16
#define __UADD16 __iar_builtin_UADD16
#define __UQADD16 __iar_builtin_UQADD16
#define __UHADD16 __iar_builtin_UHADD16
#define __SSUB16 __iar_builtin_SSUB16
#define __QSUB16 __iar_builtin_QSUB16
#define __SHSUB16 __iar_builtin_SHSUB16
#define __USUB16 __iar_builtin_USUB16
#define __UQSUB16 __iar_builtin_UQSUB16
#define __UHSUB16 __iar_builtin_UHSUB16
#define __SASX __iar_builtin_SASX
#define __QASX __iar_builtin_QASX
#define __SHASX __iar_builtin_SHASX
#define __UASX __iar_builtin_UASX
#define __UQASX __iar_builtin_UQASX
#define __UHASX __iar_builtin_UHASX
#define __SSAX __iar_builtin_SSAX
#define __QSAX __iar_builtin_QSAX
#define __SHSAX __iar_builtin_SHSAX
#define __USAX __iar_builtin_USAX
#define __UQSAX __iar_builtin_UQSAX
#define __UHSAX __iar_builtin_UHSAX
#define __USAD8 __iar_builtin_USAD8
#define __USADA8 __iar_builtin_USADA8
#define __SSAT16 __iar_builtin_SSAT16
#define __USAT16 __iar_builtin_USAT16
#define __UXTB16 __iar_builtin_UXTB16
#define __UXTAB16 __iar_builtin_UXTAB16
#define __SXTB16 __iar_builtin_SXTB16
#define __SXTAB16 __iar_builtin_SXTAB16
#define __SMUAD __iar_builtin_SMUAD
#define __SMUADX __iar_builtin_SMUADX
#define __SMMLA __iar_builtin_SMMLA
#define __SMLAD __iar_builtin_SMLAD
#define __SMLADX __iar_builtin_SMLADX
#define __SMLALD __iar_builtin_SMLALD
#define __SMLALDX __iar_builtin_SMLALDX
#define __SMUSD __iar_builtin_SMUSD
#define __SMUSDX __iar_builtin_SMUSDX
#define __SMLSD __iar_builtin_SMLSD
#define __SMLSDX __iar_builtin_SMLSDX
#define __SMLSLD __iar_builtin_SMLSLD
#define __SMLSLDX __iar_builtin_SMLSLDX
#define __SEL __iar_builtin_SEL
#define __QADD __iar_builtin_QADD
#define __QSUB __iar_builtin_QSUB
#define __PKHBT __iar_builtin_PKHBT
#define __PKHTB __iar_builtin_PKHTB
#endif
#else /* __ICCARM_INTRINSICS_VERSION__ == 2 */
#if __IAR_M0_FAMILY
/* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */
#define __CLZ __cmsis_iar_clz_not_active
#define __SSAT __cmsis_iar_ssat_not_active
#define __USAT __cmsis_iar_usat_not_active
#define __RBIT __cmsis_iar_rbit_not_active
#define __get_APSR __cmsis_iar_get_APSR_not_active
#endif
#if (!((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) ))
#define __get_FPSCR __cmsis_iar_get_FPSR_not_active
#define __set_FPSCR __cmsis_iar_set_FPSR_not_active
#endif
#ifdef __INTRINSICS_INCLUDED
#error intrinsics.h is already included previously!
#endif
#include <intrinsics.h>
#if __IAR_M0_FAMILY
/* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */
#undef __CLZ
#undef __SSAT
#undef __USAT
#undef __RBIT
#undef __get_APSR
__STATIC_INLINE uint8_t __CLZ(uint32_t data)
{
if (data == 0U) { return 32U; }
uint32_t count = 0U;
uint32_t mask = 0x80000000U;
while ((data & mask) == 0U)
{
count += 1U;
mask = mask >> 1U;
}
return count;
}
__STATIC_INLINE uint32_t __RBIT(uint32_t v)
{
uint8_t sc = 31U;
uint32_t r = v;
for (v >>= 1U; v; v >>= 1U)
{
r <<= 1U;
r |= v & 1U;
sc--;
}
return (r << sc);
}
__STATIC_INLINE uint32_t __get_APSR(void)
{
uint32_t res;
__asm("MRS %0,APSR" : "=r" (res));
return res;
}
#endif
#if (!((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
(defined (__FPU_USED ) && (__FPU_USED == 1U)) ))
#undef __get_FPSCR
#undef __set_FPSCR
#define __get_FPSCR() (0)
#define __set_FPSCR(VALUE) ((void)VALUE)
#endif
#pragma diag_suppress=Pe940
#pragma diag_suppress=Pe177
#define __enable_irq __enable_interrupt
#define __disable_irq __disable_interrupt
#define __NOP __no_operation
#define __get_xPSR __get_PSR
#if (!defined(__ARM_ARCH_6M__) || __ARM_ARCH_6M__==0)
__IAR_FT uint32_t __LDREXW(uint32_t volatile *ptr)
{
return __LDREX((unsigned long *)ptr);
}
__IAR_FT uint32_t __STREXW(uint32_t value, uint32_t volatile *ptr)
{
return __STREX(value, (unsigned long *)ptr);
}
#endif
/* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */
#if (__CORTEX_M >= 0x03)
__IAR_FT uint32_t __RRX(uint32_t value)
{
uint32_t result;
__ASM volatile("RRX %0, %1" : "=r"(result) : "r" (value));
return(result);
}
__IAR_FT void __set_BASEPRI_MAX(uint32_t value)
{
__asm volatile("MSR BASEPRI_MAX,%0"::"r" (value));
}
#define __enable_fault_irq __enable_fiq
#define __disable_fault_irq __disable_fiq
#endif /* (__CORTEX_M >= 0x03) */
__IAR_FT uint32_t __ROR(uint32_t op1, uint32_t op2)
{
return (op1 >> op2) | (op1 << ((sizeof(op1)*8)-op2));
}
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
__IAR_FT uint32_t __get_MSPLIM(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,MSPLIM" : "=r" (res));
#endif
return res;
}
__IAR_FT void __set_MSPLIM(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure MSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR MSPLIM,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __get_PSPLIM(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,PSPLIM" : "=r" (res));
#endif
return res;
}
__IAR_FT void __set_PSPLIM(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR PSPLIM,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __TZ_get_CONTROL_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,CONTROL_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_CONTROL_NS(uint32_t value)
{
__asm volatile("MSR CONTROL_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PSP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,PSP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_PSP_NS(uint32_t value)
{
__asm volatile("MSR PSP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_MSP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,MSP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_MSP_NS(uint32_t value)
{
__asm volatile("MSR MSP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_SP_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,SP_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_SP_NS(uint32_t value)
{
__asm volatile("MSR SP_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PRIMASK_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,PRIMASK_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_PRIMASK_NS(uint32_t value)
{
__asm volatile("MSR PRIMASK_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_BASEPRI_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,BASEPRI_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_BASEPRI_NS(uint32_t value)
{
__asm volatile("MSR BASEPRI_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_FAULTMASK_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,FAULTMASK_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_FAULTMASK_NS(uint32_t value)
{
__asm volatile("MSR FAULTMASK_NS,%0" :: "r" (value));
}
__IAR_FT uint32_t __TZ_get_PSPLIM_NS(void)
{
uint32_t res;
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
res = 0U;
#else
__asm volatile("MRS %0,PSPLIM_NS" : "=r" (res));
#endif
return res;
}
__IAR_FT void __TZ_set_PSPLIM_NS(uint32_t value)
{
#if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \
(!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3)))
// without main extensions, the non-secure PSPLIM is RAZ/WI
(void)value;
#else
__asm volatile("MSR PSPLIM_NS,%0" :: "r" (value));
#endif
}
__IAR_FT uint32_t __TZ_get_MSPLIM_NS(void)
{
uint32_t res;
__asm volatile("MRS %0,MSPLIM_NS" : "=r" (res));
return res;
}
__IAR_FT void __TZ_set_MSPLIM_NS(uint32_t value)
{
__asm volatile("MSR MSPLIM_NS,%0" :: "r" (value));
}
#endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */
#endif /* __ICCARM_INTRINSICS_VERSION__ == 2 */
#define __BKPT(value) __asm volatile ("BKPT %0" : : "i"(value))
#if __IAR_M0_FAMILY
__STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
{
if ((sat >= 1U) && (sat <= 32U))
{
const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
const int32_t min = -1 - max ;
if (val > max)
{
return max;
}
else if (val < min)
{
return min;
}
}
return val;
}
__STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
{
if (sat <= 31U)
{
const uint32_t max = ((1U << sat) - 1U);
if (val > (int32_t)max)
{
return max;
}
else if (val < 0)
{
return 0U;
}
}
return (uint32_t)val;
}
#endif
#if (__CORTEX_M >= 0x03) /* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */
__IAR_FT uint8_t __LDRBT(volatile uint8_t *addr)
{
uint32_t res;
__ASM volatile ("LDRBT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDRHT(volatile uint16_t *addr)
{
uint32_t res;
__ASM volatile ("LDRHT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDRT(volatile uint32_t *addr)
{
uint32_t res;
__ASM volatile ("LDRT %0, [%1]" : "=r" (res) : "r" (addr) : "memory");
return res;
}
__IAR_FT void __STRBT(uint8_t value, volatile uint8_t *addr)
{
__ASM volatile ("STRBT %1, [%0]" : : "r" (addr), "r" ((uint32_t)value) : "memory");
}
__IAR_FT void __STRHT(uint16_t value, volatile uint16_t *addr)
{
__ASM volatile ("STRHT %1, [%0]" : : "r" (addr), "r" ((uint32_t)value) : "memory");
}
__IAR_FT void __STRT(uint32_t value, volatile uint32_t *addr)
{
__ASM volatile ("STRT %1, [%0]" : : "r" (addr), "r" (value) : "memory");
}
#endif /* (__CORTEX_M >= 0x03) */
#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
(defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
__IAR_FT uint8_t __LDAB(volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAB %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDAH(volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAH %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDA(volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("LDA %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return res;
}
__IAR_FT void __STLB(uint8_t value, volatile uint8_t *ptr)
{
__ASM volatile ("STLB %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT void __STLH(uint16_t value, volatile uint16_t *ptr)
{
__ASM volatile ("STLH %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT void __STL(uint32_t value, volatile uint32_t *ptr)
{
__ASM volatile ("STL %1, [%0]" :: "r" (ptr), "r" (value) : "memory");
}
__IAR_FT uint8_t __LDAEXB(volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEXB %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint8_t)res);
}
__IAR_FT uint16_t __LDAEXH(volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEXH %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return ((uint16_t)res);
}
__IAR_FT uint32_t __LDAEX(volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("LDAEX %0, [%1]" : "=r" (res) : "r" (ptr) : "memory");
return res;
}
__IAR_FT uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEXB %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
__IAR_FT uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEXH %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
__IAR_FT uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr)
{
uint32_t res;
__ASM volatile ("STLEX %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory");
return res;
}
#endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */
#undef __IAR_FT
#undef __IAR_M0_FAMILY
#undef __ICCARM_V8
#pragma diag_default=Pe940
#pragma diag_default=Pe177
#define __SXTB16_RORn(ARG1, ARG2) __SXTB16(__ROR(ARG1, ARG2))
#endif /* __CMSIS_ICCARM_H__ */

View File

@@ -0,0 +1,39 @@
/**************************************************************************//**
* @file cmsis_version.h
* @brief CMSIS Core(M) Version definitions
* @version V5.0.4
* @date 23. July 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CMSIS_VERSION_H
#define __CMSIS_VERSION_H
/* CMSIS Version definitions */
#define __CM_CMSIS_VERSION_MAIN ( 5U) /*!< [31:16] CMSIS Core(M) main version */
#define __CM_CMSIS_VERSION_SUB ( 4U) /*!< [15:0] CMSIS Core(M) sub version */
#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | \
__CM_CMSIS_VERSION_SUB ) /*!< CMSIS Core(M) version number */
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,952 @@
/**************************************************************************//**
* @file core_cm0.h
* @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File
* @version V5.0.8
* @date 21. August 2019
******************************************************************************/
/*
* Copyright (c) 2009-2019 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM0_H_GENERIC
#define __CORE_CM0_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M0
@{
*/
#include "cmsis_version.h"
/* CMSIS CM0 definitions */
#define __CM0_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM0_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | \
__CM0_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (0U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM0_H_DEPENDANT
#define __CORE_CM0_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM0_REV
#define __CM0_REV 0x0000U
#warning "__CM0_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M0 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RESERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M0 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)(NVIC_USER_IRQ_OFFSET << 2); /* point to 1st user interrupt */
*(vectors + (int32_t)IRQn) = vector; /* use pointer arithmetic to access vector */
/* ARM Application Note 321 states that the M0 does not require the architectural barrier */
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)(NVIC_USER_IRQ_OFFSET << 2); /* point to 1st user interrupt */
return *(vectors + (int32_t)IRQn); /* use pointer arithmetic to access vector */
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM0_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,979 @@
/**************************************************************************//**
* @file core_cm1.h
* @brief CMSIS Cortex-M1 Core Peripheral Access Layer Header File
* @version V1.0.1
* @date 12. November 2018
******************************************************************************/
/*
* Copyright (c) 2009-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef __CORE_CM1_H_GENERIC
#define __CORE_CM1_H_GENERIC
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
\page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
CMSIS violates the following MISRA-C:2004 rules:
\li Required Rule 8.5, object/function definition in header file.<br>
Function definitions in header files are used to allow 'inlining'.
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
Unions are used for effective representation of core registers.
\li Advisory Rule 19.7, Function-like macro defined.<br>
Function-like macros are used to allow more efficient code.
*/
/*******************************************************************************
* CMSIS definitions
******************************************************************************/
/**
\ingroup Cortex_M1
@{
*/
#include "cmsis_version.h"
/* CMSIS CM1 definitions */
#define __CM1_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
#define __CM1_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
#define __CM1_CMSIS_VERSION ((__CM1_CMSIS_VERSION_MAIN << 16U) | \
__CM1_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
#define __CORTEX_M (1U) /*!< Cortex-M Core */
/** __FPU_USED indicates whether an FPU is used or not.
This core does not support an FPU at all
*/
#define __FPU_USED 0U
#if defined ( __CC_ARM )
#if defined __TARGET_FPU_VFP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#if defined __ARM_FP
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __GNUC__ )
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __ICCARM__ )
#if defined __ARMVFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TI_ARM__ )
#if defined __TI_VFP_SUPPORT__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __TASKING__ )
#if defined __FPU_VFP__
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#elif defined ( __CSMC__ )
#if ( __CSMC__ & 0x400U)
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
#endif
#endif
#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_GENERIC */
#ifndef __CMSIS_GENERIC
#ifndef __CORE_CM1_H_DEPENDANT
#define __CORE_CM1_H_DEPENDANT
#ifdef __cplusplus
extern "C" {
#endif
/* check device defines and use defaults */
#if defined __CHECK_DEVICE_DEFINES
#ifndef __CM1_REV
#define __CM1_REV 0x0100U
#warning "__CM1_REV not defined in device header file; using default!"
#endif
#ifndef __NVIC_PRIO_BITS
#define __NVIC_PRIO_BITS 2U
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
#endif
#ifndef __Vendor_SysTickConfig
#define __Vendor_SysTickConfig 0U
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
#endif
#endif
/* IO definitions (access restrictions to peripheral registers) */
/**
\defgroup CMSIS_glob_defs CMSIS Global Defines
<strong>IO Type Qualifiers</strong> are used
\li to specify the access to peripheral variables.
\li for automatic generation of peripheral register debug information.
*/
#ifdef __cplusplus
#define __I volatile /*!< Defines 'read only' permissions */
#else
#define __I volatile const /*!< Defines 'read only' permissions */
#endif
#define __O volatile /*!< Defines 'write only' permissions */
#define __IO volatile /*!< Defines 'read / write' permissions */
/* following defines should be used for structure members */
#define __IM volatile const /*! Defines 'read only' structure member permissions */
#define __OM volatile /*! Defines 'write only' structure member permissions */
#define __IOM volatile /*! Defines 'read / write' structure member permissions */
/*@} end of group Cortex_M1 */
/*******************************************************************************
* Register Abstraction
Core Register contain:
- Core Register
- Core NVIC Register
- Core SCB Register
- Core SysTick Register
******************************************************************************/
/**
\defgroup CMSIS_core_register Defines and Type Definitions
\brief Type definitions and defines for Cortex-M processor based devices.
*/
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CORE Status and Control Registers
\brief Core Register type definitions.
@{
*/
/**
\brief Union type to access the Application Program Status Register (APSR).
*/
typedef union
{
struct
{
uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} APSR_Type;
/* APSR Register Definitions */
#define APSR_N_Pos 31U /*!< APSR: N Position */
#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
#define APSR_Z_Pos 30U /*!< APSR: Z Position */
#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
#define APSR_C_Pos 29U /*!< APSR: C Position */
#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
#define APSR_V_Pos 28U /*!< APSR: V Position */
#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
/**
\brief Union type to access the Interrupt Program Status Register (IPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} IPSR_Type;
/* IPSR Register Definitions */
#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
/**
\brief Union type to access the Special-Purpose Program Status Registers (xPSR).
*/
typedef union
{
struct
{
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} xPSR_Type;
/* xPSR Register Definitions */
#define xPSR_N_Pos 31U /*!< xPSR: N Position */
#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
#define xPSR_C_Pos 29U /*!< xPSR: C Position */
#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
#define xPSR_V_Pos 28U /*!< xPSR: V Position */
#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
#define xPSR_T_Pos 24U /*!< xPSR: T Position */
#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
/**
\brief Union type to access the Control Registers (CONTROL).
*/
typedef union
{
struct
{
uint32_t _reserved0:1; /*!< bit: 0 Reserved */
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
} b; /*!< Structure used for bit access */
uint32_t w; /*!< Type used for word access */
} CONTROL_Type;
/* CONTROL Register Definitions */
#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
/*@} end of group CMSIS_CORE */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
\brief Type definitions for the NVIC Registers
@{
*/
/**
\brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
*/
typedef struct
{
__IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
uint32_t RESERVED0[31U];
__IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
uint32_t RSERVED1[31U];
__IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
uint32_t RESERVED2[31U];
__IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
uint32_t RESERVED3[31U];
uint32_t RESERVED4[64U];
__IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
} NVIC_Type;
/*@} end of group CMSIS_NVIC */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCB System Control Block (SCB)
\brief Type definitions for the System Control Block Registers
@{
*/
/**
\brief Structure type to access the System Control Block (SCB).
*/
typedef struct
{
__IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
__IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
uint32_t RESERVED0;
__IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
__IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
__IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
uint32_t RESERVED1;
__IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
__IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
} SCB_Type;
/* SCB CPUID Register Definitions */
#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
/* SCB Interrupt Control State Register Definitions */
#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
/* SCB Application Interrupt and Reset Control Register Definitions */
#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
/* SCB System Control Register Definitions */
#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
/* SCB Configuration Control Register Definitions */
#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
/* SCB System Handler Control and State Register Definitions */
#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
/*@} end of group CMSIS_SCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB)
\brief Type definitions for the System Control and ID Register not in the SCB
@{
*/
/**
\brief Structure type to access the System Control and ID Register not in the SCB.
*/
typedef struct
{
uint32_t RESERVED0[2U];
__IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */
} SCnSCB_Type;
/* Auxiliary Control Register Definitions */
#define SCnSCB_ACTLR_ITCMUAEN_Pos 4U /*!< ACTLR: Instruction TCM Upper Alias Enable Position */
#define SCnSCB_ACTLR_ITCMUAEN_Msk (1UL << SCnSCB_ACTLR_ITCMUAEN_Pos) /*!< ACTLR: Instruction TCM Upper Alias Enable Mask */
#define SCnSCB_ACTLR_ITCMLAEN_Pos 3U /*!< ACTLR: Instruction TCM Lower Alias Enable Position */
#define SCnSCB_ACTLR_ITCMLAEN_Msk (1UL << SCnSCB_ACTLR_ITCMLAEN_Pos) /*!< ACTLR: Instruction TCM Lower Alias Enable Mask */
/*@} end of group CMSIS_SCnotSCB */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
\brief Type definitions for the System Timer Registers.
@{
*/
/**
\brief Structure type to access the System Timer (SysTick).
*/
typedef struct
{
__IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
__IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
__IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
__IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
} SysTick_Type;
/* SysTick Control / Status Register Definitions */
#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
/* SysTick Reload Register Definitions */
#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
/* SysTick Current Register Definitions */
#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
/* SysTick Calibration Register Definitions */
#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
/*@} end of group CMSIS_SysTick */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
\brief Cortex-M1 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
Therefore they are not covered by the Cortex-M1 header file.
@{
*/
/*@} end of group CMSIS_CoreDebug */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_bitfield Core register bit field macros
\brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
@{
*/
/**
\brief Mask and shift a bit field value for use in a register bit range.
\param[in] field Name of the register bit field.
\param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
\return Masked and shifted value.
*/
#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
/**
\brief Mask and shift a register value to extract a bit filed value.
\param[in] field Name of the register bit field.
\param[in] value Value of register. This parameter is interpreted as an uint32_t type.
\return Masked and shifted bit field value.
*/
#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
/*@} end of group CMSIS_core_bitfield */
/**
\ingroup CMSIS_core_register
\defgroup CMSIS_core_base Core Definitions
\brief Definitions for base addresses, unions, and structures.
@{
*/
/* Memory mapping of Core Hardware */
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
#define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
/*@} */
/*******************************************************************************
* Hardware Abstraction Layer
Core Function Interface contains:
- Core NVIC Functions
- Core SysTick Functions
- Core Register Access Functions
******************************************************************************/
/**
\defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
*/
/* ########################## NVIC functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
\brief Functions that manage interrupts and exceptions via the NVIC.
@{
*/
#ifdef CMSIS_NVIC_VIRTUAL
#ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
#define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
#endif
#include CMSIS_NVIC_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
#define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
#define NVIC_EnableIRQ __NVIC_EnableIRQ
#define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
#define NVIC_DisableIRQ __NVIC_DisableIRQ
#define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
#define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
#define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M1 */
#define NVIC_SetPriority __NVIC_SetPriority
#define NVIC_GetPriority __NVIC_GetPriority
#define NVIC_SystemReset __NVIC_SystemReset
#endif /* CMSIS_NVIC_VIRTUAL */
#ifdef CMSIS_VECTAB_VIRTUAL
#ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
#endif
#include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
#else
#define NVIC_SetVector __NVIC_SetVector
#define NVIC_GetVector __NVIC_GetVector
#endif /* (CMSIS_VECTAB_VIRTUAL) */
#define NVIC_USER_IRQ_OFFSET 16
/* The following EXC_RETURN values are saved the LR on exception entry */
#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
/* Interrupt Priorities are WORD accessible only under Armv6-M */
/* The following MACROS handle generation of the register offset and byte masks */
#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
#define __NVIC_SetPriorityGrouping(X) (void)(X)
#define __NVIC_GetPriorityGrouping() (0U)
/**
\brief Enable Interrupt
\details Enables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
/**
\brief Get Interrupt Enable status
\details Returns a device specific interrupt enable status from the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt is not enabled.
\return 1 Interrupt is enabled.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Disable Interrupt
\details Disables a device specific interrupt in the NVIC interrupt controller.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__DSB();
__ISB();
}
}
/**
\brief Get Pending Interrupt
\details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
\param [in] IRQn Device specific interrupt number.
\return 0 Interrupt status is not pending.
\return 1 Interrupt status is pending.
\note IRQn must not be negative.
*/
__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
}
else
{
return(0U);
}
}
/**
\brief Set Pending Interrupt
\details Sets the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Clear Pending Interrupt
\details Clears the pending bit of a device specific interrupt in the NVIC pending register.
\param [in] IRQn Device specific interrupt number.
\note IRQn must not be negative.
*/
__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
}
}
/**
\brief Set Interrupt Priority
\details Sets the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\param [in] priority Priority to set.
\note The priority cannot be set for every processor exception.
*/
__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
{
if ((int32_t)(IRQn) >= 0)
{
NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
else
{
SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
(((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
}
}
/**
\brief Get Interrupt Priority
\details Reads the priority of a device specific interrupt or a processor exception.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Interrupt Priority.
Value is aligned automatically to the implemented priority bits of the microcontroller.
*/
__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
else
{
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
}
}
/**
\brief Encode Priority
\details Encodes the priority for an interrupt with the given priority group,
preemptive priority value, and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
\param [in] PriorityGroup Used priority group.
\param [in] PreemptPriority Preemptive priority value (starting from 0).
\param [in] SubPriority Subpriority value (starting from 0).
\return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
*/
__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
return (
((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
);
}
/**
\brief Decode Priority
\details Decodes an interrupt priority value with a given priority group to
preemptive priority value and subpriority value.
In case of a conflict between priority grouping and available
priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
\param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
\param [in] PriorityGroup Used priority group.
\param [out] pPreemptPriority Preemptive priority value (starting from 0).
\param [out] pSubPriority Subpriority value (starting from 0).
*/
__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
{
uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
uint32_t PreemptPriorityBits;
uint32_t SubPriorityBits;
PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
*pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
*pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
}
/**
\brief Set Interrupt Vector
\details Sets an interrupt vector in SRAM based interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
Address 0 must be mapped to SRAM.
\param [in] IRQn Interrupt number
\param [in] vector Address of interrupt handler function
*/
__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
{
uint32_t *vectors = (uint32_t *)0x0U;
vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector;
/* ARM Application Note 321 states that the M1 does not require the architectural barrier */
}
/**
\brief Get Interrupt Vector
\details Reads an interrupt vector from interrupt vector table.
The interrupt number can be positive to specify a device specific interrupt,
or negative to specify a processor exception.
\param [in] IRQn Interrupt number.
\return Address of interrupt handler function
*/
__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
{
uint32_t *vectors = (uint32_t *)0x0U;
return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET];
}
/**
\brief System Reset
\details Initiates a system reset request to reset the MCU.
*/
__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
{
__DSB(); /* Ensure all outstanding memory accesses included
buffered write are completed before reset */
SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
SCB_AIRCR_SYSRESETREQ_Msk);
__DSB(); /* Ensure completion of memory access */
for(;;) /* wait until reset */
{
__NOP();
}
}
/*@} end of CMSIS_Core_NVICFunctions */
/* ########################## FPU functions #################################### */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_FpuFunctions FPU Functions
\brief Function that provides FPU type.
@{
*/
/**
\brief get FPU type
\details returns the FPU type
\returns
- \b 0: No FPU
- \b 1: Single precision FPU
- \b 2: Double + Single precision FPU
*/
__STATIC_INLINE uint32_t SCB_GetFPUType(void)
{
return 0U; /* No FPU */
}
/*@} end of CMSIS_Core_FpuFunctions */
/* ################################## SysTick function ############################################ */
/**
\ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
\brief Functions that configure the System.
@{
*/
#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
/**
\brief System Tick Configuration
\details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
Counter is in free running mode to generate periodic interrupts.
\param [in] ticks Number of ticks between two interrupts.
\return 0 Function succeeded.
\return 1 Function failed.
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
must contain a vendor-specific implementation of this function.
*/
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0UL); /* Function successful */
}
#endif
/*@} end of CMSIS_Core_SysTickFunctions */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM1_H_DEPENDANT */
#endif /* __CMSIS_GENERIC */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,275 @@
/******************************************************************************
* @file mpu_armv7.h
* @brief CMSIS MPU API for Armv7-M MPU
* @version V5.1.1
* @date 10. February 2020
******************************************************************************/
/*
* Copyright (c) 2017-2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV7_H
#define ARM_MPU_ARMV7_H
#define ARM_MPU_REGION_SIZE_32B ((uint8_t)0x04U) ///!< MPU Region Size 32 Bytes
#define ARM_MPU_REGION_SIZE_64B ((uint8_t)0x05U) ///!< MPU Region Size 64 Bytes
#define ARM_MPU_REGION_SIZE_128B ((uint8_t)0x06U) ///!< MPU Region Size 128 Bytes
#define ARM_MPU_REGION_SIZE_256B ((uint8_t)0x07U) ///!< MPU Region Size 256 Bytes
#define ARM_MPU_REGION_SIZE_512B ((uint8_t)0x08U) ///!< MPU Region Size 512 Bytes
#define ARM_MPU_REGION_SIZE_1KB ((uint8_t)0x09U) ///!< MPU Region Size 1 KByte
#define ARM_MPU_REGION_SIZE_2KB ((uint8_t)0x0AU) ///!< MPU Region Size 2 KBytes
#define ARM_MPU_REGION_SIZE_4KB ((uint8_t)0x0BU) ///!< MPU Region Size 4 KBytes
#define ARM_MPU_REGION_SIZE_8KB ((uint8_t)0x0CU) ///!< MPU Region Size 8 KBytes
#define ARM_MPU_REGION_SIZE_16KB ((uint8_t)0x0DU) ///!< MPU Region Size 16 KBytes
#define ARM_MPU_REGION_SIZE_32KB ((uint8_t)0x0EU) ///!< MPU Region Size 32 KBytes
#define ARM_MPU_REGION_SIZE_64KB ((uint8_t)0x0FU) ///!< MPU Region Size 64 KBytes
#define ARM_MPU_REGION_SIZE_128KB ((uint8_t)0x10U) ///!< MPU Region Size 128 KBytes
#define ARM_MPU_REGION_SIZE_256KB ((uint8_t)0x11U) ///!< MPU Region Size 256 KBytes
#define ARM_MPU_REGION_SIZE_512KB ((uint8_t)0x12U) ///!< MPU Region Size 512 KBytes
#define ARM_MPU_REGION_SIZE_1MB ((uint8_t)0x13U) ///!< MPU Region Size 1 MByte
#define ARM_MPU_REGION_SIZE_2MB ((uint8_t)0x14U) ///!< MPU Region Size 2 MBytes
#define ARM_MPU_REGION_SIZE_4MB ((uint8_t)0x15U) ///!< MPU Region Size 4 MBytes
#define ARM_MPU_REGION_SIZE_8MB ((uint8_t)0x16U) ///!< MPU Region Size 8 MBytes
#define ARM_MPU_REGION_SIZE_16MB ((uint8_t)0x17U) ///!< MPU Region Size 16 MBytes
#define ARM_MPU_REGION_SIZE_32MB ((uint8_t)0x18U) ///!< MPU Region Size 32 MBytes
#define ARM_MPU_REGION_SIZE_64MB ((uint8_t)0x19U) ///!< MPU Region Size 64 MBytes
#define ARM_MPU_REGION_SIZE_128MB ((uint8_t)0x1AU) ///!< MPU Region Size 128 MBytes
#define ARM_MPU_REGION_SIZE_256MB ((uint8_t)0x1BU) ///!< MPU Region Size 256 MBytes
#define ARM_MPU_REGION_SIZE_512MB ((uint8_t)0x1CU) ///!< MPU Region Size 512 MBytes
#define ARM_MPU_REGION_SIZE_1GB ((uint8_t)0x1DU) ///!< MPU Region Size 1 GByte
#define ARM_MPU_REGION_SIZE_2GB ((uint8_t)0x1EU) ///!< MPU Region Size 2 GBytes
#define ARM_MPU_REGION_SIZE_4GB ((uint8_t)0x1FU) ///!< MPU Region Size 4 GBytes
#define ARM_MPU_AP_NONE 0U ///!< MPU Access Permission no access
#define ARM_MPU_AP_PRIV 1U ///!< MPU Access Permission privileged access only
#define ARM_MPU_AP_URO 2U ///!< MPU Access Permission unprivileged access read-only
#define ARM_MPU_AP_FULL 3U ///!< MPU Access Permission full access
#define ARM_MPU_AP_PRO 5U ///!< MPU Access Permission privileged access read-only
#define ARM_MPU_AP_RO 6U ///!< MPU Access Permission read-only access
/** MPU Region Base Address Register Value
*
* \param Region The region to be configured, number 0 to 15.
* \param BaseAddress The base address for the region.
*/
#define ARM_MPU_RBAR(Region, BaseAddress) \
(((BaseAddress) & MPU_RBAR_ADDR_Msk) | \
((Region) & MPU_RBAR_REGION_Msk) | \
(MPU_RBAR_VALID_Msk))
/**
* MPU Memory Access Attributes
*
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
*/
#define ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable) \
((((TypeExtField) << MPU_RASR_TEX_Pos) & MPU_RASR_TEX_Msk) | \
(((IsShareable) << MPU_RASR_S_Pos) & MPU_RASR_S_Msk) | \
(((IsCacheable) << MPU_RASR_C_Pos) & MPU_RASR_C_Msk) | \
(((IsBufferable) << MPU_RASR_B_Pos) & MPU_RASR_B_Msk))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param AccessAttributes Memory access attribution, see \ref ARM_MPU_ACCESS_.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR_EX(DisableExec, AccessPermission, AccessAttributes, SubRegionDisable, Size) \
((((DisableExec) << MPU_RASR_XN_Pos) & MPU_RASR_XN_Msk) | \
(((AccessPermission) << MPU_RASR_AP_Pos) & MPU_RASR_AP_Msk) | \
(((AccessAttributes) & (MPU_RASR_TEX_Msk | MPU_RASR_S_Msk | MPU_RASR_C_Msk | MPU_RASR_B_Msk))) | \
(((SubRegionDisable) << MPU_RASR_SRD_Pos) & MPU_RASR_SRD_Msk) | \
(((Size) << MPU_RASR_SIZE_Pos) & MPU_RASR_SIZE_Msk) | \
(((MPU_RASR_ENABLE_Msk))))
/**
* MPU Region Attribute and Size Register Value
*
* \param DisableExec Instruction access disable bit, 1= disable instruction fetches.
* \param AccessPermission Data access permissions, allows you to configure read/write access for User and Privileged mode.
* \param TypeExtField Type extension field, allows you to configure memory access type, for example strongly ordered, peripheral.
* \param IsShareable Region is shareable between multiple bus masters.
* \param IsCacheable Region is cacheable, i.e. its value may be kept in cache.
* \param IsBufferable Region is bufferable, i.e. using write-back caching. Cacheable but non-bufferable regions use write-through policy.
* \param SubRegionDisable Sub-region disable field.
* \param Size Region size of the region to be configured, for example 4K, 8K.
*/
#define ARM_MPU_RASR(DisableExec, AccessPermission, TypeExtField, IsShareable, IsCacheable, IsBufferable, SubRegionDisable, Size) \
ARM_MPU_RASR_EX(DisableExec, AccessPermission, ARM_MPU_ACCESS_(TypeExtField, IsShareable, IsCacheable, IsBufferable), SubRegionDisable, Size)
/**
* MPU Memory Access Attribute for strongly ordered memory.
* - TEX: 000b
* - Shareable
* - Non-cacheable
* - Non-bufferable
*/
#define ARM_MPU_ACCESS_ORDERED ARM_MPU_ACCESS_(0U, 1U, 0U, 0U)
/**
* MPU Memory Access Attribute for device memory.
* - TEX: 000b (if shareable) or 010b (if non-shareable)
* - Shareable or non-shareable
* - Non-cacheable
* - Bufferable (if shareable) or non-bufferable (if non-shareable)
*
* \param IsShareable Configures the device memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_DEVICE(IsShareable) ((IsShareable) ? ARM_MPU_ACCESS_(0U, 1U, 0U, 1U) : ARM_MPU_ACCESS_(2U, 0U, 0U, 0U))
/**
* MPU Memory Access Attribute for normal memory.
* - TEX: 1BBb (reflecting outer cacheability rules)
* - Shareable or non-shareable
* - Cacheable or non-cacheable (reflecting inner cacheability rules)
* - Bufferable or non-bufferable (reflecting inner cacheability rules)
*
* \param OuterCp Configures the outer cache policy.
* \param InnerCp Configures the inner cache policy.
* \param IsShareable Configures the memory as shareable or non-shareable.
*/
#define ARM_MPU_ACCESS_NORMAL(OuterCp, InnerCp, IsShareable) ARM_MPU_ACCESS_((4U | (OuterCp)), IsShareable, ((InnerCp) >> 1U), ((InnerCp) & 1U))
/**
* MPU Memory Access Attribute non-cacheable policy.
*/
#define ARM_MPU_CACHEP_NOCACHE 0U
/**
* MPU Memory Access Attribute write-back, write and read allocate policy.
*/
#define ARM_MPU_CACHEP_WB_WRA 1U
/**
* MPU Memory Access Attribute write-through, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WT_NWA 2U
/**
* MPU Memory Access Attribute write-back, no write allocate policy.
*/
#define ARM_MPU_CACHEP_WB_NWA 3U
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; //!< The region base address register value (RBAR)
uint32_t RASR; //!< The region attribute and size register value (RASR) \ref MPU_RASR
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
__DMB();
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
MPU->RNR = rnr;
MPU->RASR = 0U;
}
/** Configure an MPU region.
* \param rbar Value for RBAR register.
* \param rsar Value for RSAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rbar, uint32_t rasr)
{
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rsar Value for RSAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(uint32_t rnr, uint32_t rbar, uint32_t rasr)
{
MPU->RNR = rnr;
MPU->RBAR = rbar;
MPU->RASR = rasr;
}
/** Memcopy with strictly ordered memory access, e.g. for register targets.
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void ARM_MPU_OrderedMemcpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
while (cnt > MPU_TYPE_RALIASES) {
ARM_MPU_OrderedMemcpy(&(MPU->RBAR), &(table->RBAR), MPU_TYPE_RALIASES*rowWordSize);
table += MPU_TYPE_RALIASES;
cnt -= MPU_TYPE_RALIASES;
}
ARM_MPU_OrderedMemcpy(&(MPU->RBAR), &(table->RBAR), cnt*rowWordSize);
}
#endif

View File

@@ -0,0 +1,352 @@
/******************************************************************************
* @file mpu_armv8.h
* @brief CMSIS MPU API for Armv8-M and Armv8.1-M MPU
* @version V5.1.2
* @date 10. February 2020
******************************************************************************/
/*
* Copyright (c) 2017-2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_MPU_ARMV8_H
#define ARM_MPU_ARMV8_H
/** \brief Attribute for device memory (outer only) */
#define ARM_MPU_ATTR_DEVICE ( 0U )
/** \brief Attribute for non-cacheable, normal memory */
#define ARM_MPU_ATTR_NON_CACHEABLE ( 4U )
/** \brief Attribute for normal memory (outer and inner)
* \param NT Non-Transient: Set to 1 for non-transient data.
* \param WB Write-Back: Set to 1 to use write-back update policy.
* \param RA Read Allocation: Set to 1 to use cache allocation on read miss.
* \param WA Write Allocation: Set to 1 to use cache allocation on write miss.
*/
#define ARM_MPU_ATTR_MEMORY_(NT, WB, RA, WA) \
((((NT) & 1U) << 3U) | (((WB) & 1U) << 2U) | (((RA) & 1U) << 1U) | ((WA) & 1U))
/** \brief Device memory type non Gathering, non Re-ordering, non Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRnE (0U)
/** \brief Device memory type non Gathering, non Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGnRE (1U)
/** \brief Device memory type non Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_nGRE (2U)
/** \brief Device memory type Gathering, Re-ordering, Early Write Acknowledgement */
#define ARM_MPU_ATTR_DEVICE_GRE (3U)
/** \brief Memory Attribute
* \param O Outer memory attributes
* \param I O == ARM_MPU_ATTR_DEVICE: Device memory attributes, else: Inner memory attributes
*/
#define ARM_MPU_ATTR(O, I) ((((O) & 0xFU) << 4U) | ((((O) & 0xFU) != 0U) ? ((I) & 0xFU) : (((I) & 0x3U) << 2U)))
/** \brief Normal memory non-shareable */
#define ARM_MPU_SH_NON (0U)
/** \brief Normal memory outer shareable */
#define ARM_MPU_SH_OUTER (2U)
/** \brief Normal memory inner shareable */
#define ARM_MPU_SH_INNER (3U)
/** \brief Memory access permissions
* \param RO Read-Only: Set to 1 for read-only memory.
* \param NP Non-Privileged: Set to 1 for non-privileged memory.
*/
#define ARM_MPU_AP_(RO, NP) ((((RO) & 1U) << 1U) | ((NP) & 1U))
/** \brief Region Base Address Register value
* \param BASE The base address bits [31:5] of a memory region. The value is zero extended. Effective address gets 32 byte aligned.
* \param SH Defines the Shareability domain for this memory region.
* \param RO Read-Only: Set to 1 for a read-only memory region.
* \param NP Non-Privileged: Set to 1 for a non-privileged memory region.
* \oaram XN eXecute Never: Set to 1 for a non-executable memory region.
*/
#define ARM_MPU_RBAR(BASE, SH, RO, NP, XN) \
(((BASE) & MPU_RBAR_BASE_Msk) | \
(((SH) << MPU_RBAR_SH_Pos) & MPU_RBAR_SH_Msk) | \
((ARM_MPU_AP_(RO, NP) << MPU_RBAR_AP_Pos) & MPU_RBAR_AP_Msk) | \
(((XN) << MPU_RBAR_XN_Pos) & MPU_RBAR_XN_Msk))
/** \brief Region Limit Address Register value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR(LIMIT, IDX) \
(((LIMIT) & MPU_RLAR_LIMIT_Msk) | \
(((IDX) << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
#if defined(MPU_RLAR_PXN_Pos)
/** \brief Region Limit Address Register with PXN value
* \param LIMIT The limit address bits [31:5] for this memory region. The value is one extended.
* \param PXN Privileged execute never. Defines whether code can be executed from this privileged region.
* \param IDX The attribute index to be associated with this memory region.
*/
#define ARM_MPU_RLAR_PXN(LIMIT, PXN, IDX) \
(((LIMIT) & MPU_RLAR_LIMIT_Msk) | \
(((PXN) << MPU_RLAR_PXN_Pos) & MPU_RLAR_PXN_Msk) | \
(((IDX) << MPU_RLAR_AttrIndx_Pos) & MPU_RLAR_AttrIndx_Msk) | \
(MPU_RLAR_EN_Msk))
#endif
/**
* Struct for a single MPU Region
*/
typedef struct {
uint32_t RBAR; /*!< Region Base Address Register value */
uint32_t RLAR; /*!< Region Limit Address Register value */
} ARM_MPU_Region_t;
/** Enable the MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable(uint32_t MPU_Control)
{
__DMB();
MPU->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
#ifdef MPU_NS
/** Enable the Non-secure MPU.
* \param MPU_Control Default access permissions for unconfigured regions.
*/
__STATIC_INLINE void ARM_MPU_Enable_NS(uint32_t MPU_Control)
{
__DMB();
MPU_NS->CTRL = MPU_Control | MPU_CTRL_ENABLE_Msk;
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;
#endif
__DSB();
__ISB();
}
/** Disable the Non-secure MPU.
*/
__STATIC_INLINE void ARM_MPU_Disable_NS(void)
{
__DMB();
#ifdef SCB_SHCSR_MEMFAULTENA_Msk
SCB_NS->SHCSR &= ~SCB_SHCSR_MEMFAULTENA_Msk;
#endif
MPU_NS->CTRL &= ~MPU_CTRL_ENABLE_Msk;
__DSB();
__ISB();
}
#endif
/** Set the memory attribute encoding to the given MPU.
* \param mpu Pointer to the MPU to be configured.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttrEx(MPU_Type* mpu, uint8_t idx, uint8_t attr)
{
const uint8_t reg = idx / 4U;
const uint32_t pos = ((idx % 4U) * 8U);
const uint32_t mask = 0xFFU << pos;
if (reg >= (sizeof(mpu->MAIR) / sizeof(mpu->MAIR[0]))) {
return; // invalid index
}
mpu->MAIR[reg] = ((mpu->MAIR[reg] & ~mask) | ((attr << pos) & mask));
}
/** Set the memory attribute encoding.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU, idx, attr);
}
#ifdef MPU_NS
/** Set the memory attribute encoding to the Non-secure MPU.
* \param idx The attribute index to be set [0-7]
* \param attr The attribute value to be set.
*/
__STATIC_INLINE void ARM_MPU_SetMemAttr_NS(uint8_t idx, uint8_t attr)
{
ARM_MPU_SetMemAttrEx(MPU_NS, idx, attr);
}
#endif
/** Clear and disable the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegionEx(MPU_Type* mpu, uint32_t rnr)
{
mpu->RNR = rnr;
mpu->RLAR = 0U;
}
/** Clear and disable the given MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU, rnr);
}
#ifdef MPU_NS
/** Clear and disable the given Non-secure MPU region.
* \param rnr Region number to be cleared.
*/
__STATIC_INLINE void ARM_MPU_ClrRegion_NS(uint32_t rnr)
{
ARM_MPU_ClrRegionEx(MPU_NS, rnr);
}
#endif
/** Configure the given MPU region of the given MPU.
* \param mpu Pointer to MPU to be used.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegionEx(MPU_Type* mpu, uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
mpu->RNR = rnr;
mpu->RBAR = rbar;
mpu->RLAR = rlar;
}
/** Configure the given MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU, rnr, rbar, rlar);
}
#ifdef MPU_NS
/** Configure the given Non-secure MPU region.
* \param rnr Region number to be configured.
* \param rbar Value for RBAR register.
* \param rlar Value for RLAR register.
*/
__STATIC_INLINE void ARM_MPU_SetRegion_NS(uint32_t rnr, uint32_t rbar, uint32_t rlar)
{
ARM_MPU_SetRegionEx(MPU_NS, rnr, rbar, rlar);
}
#endif
/** Memcopy with strictly ordered memory access, e.g. for register targets.
* \param dst Destination data is copied to.
* \param src Source data is copied from.
* \param len Amount of data words to be copied.
*/
__STATIC_INLINE void ARM_MPU_OrderedMemcpy(volatile uint32_t* dst, const uint32_t* __RESTRICT src, uint32_t len)
{
uint32_t i;
for (i = 0U; i < len; ++i)
{
dst[i] = src[i];
}
}
/** Load the given number of MPU regions from a table to the given MPU.
* \param mpu Pointer to the MPU registers to be used.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_LoadEx(MPU_Type* mpu, uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
const uint32_t rowWordSize = sizeof(ARM_MPU_Region_t)/4U;
if (cnt == 1U) {
mpu->RNR = rnr;
ARM_MPU_OrderedMemcpy(&(mpu->RBAR), &(table->RBAR), rowWordSize);
} else {
uint32_t rnrBase = rnr & ~(MPU_TYPE_RALIASES-1U);
uint32_t rnrOffset = rnr % MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
while ((rnrOffset + cnt) > MPU_TYPE_RALIASES) {
uint32_t c = MPU_TYPE_RALIASES - rnrOffset;
ARM_MPU_OrderedMemcpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), c*rowWordSize);
table += c;
cnt -= c;
rnrOffset = 0U;
rnrBase += MPU_TYPE_RALIASES;
mpu->RNR = rnrBase;
}
ARM_MPU_OrderedMemcpy(&(mpu->RBAR)+(rnrOffset*2U), &(table->RBAR), cnt*rowWordSize);
}
}
/** Load the given number of MPU regions from a table.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU, rnr, table, cnt);
}
#ifdef MPU_NS
/** Load the given number of MPU regions from a table to the Non-secure MPU.
* \param rnr First region number to be configured.
* \param table Pointer to the MPU configuration table.
* \param cnt Amount of regions to be configured.
*/
__STATIC_INLINE void ARM_MPU_Load_NS(uint32_t rnr, ARM_MPU_Region_t const* table, uint32_t cnt)
{
ARM_MPU_LoadEx(MPU_NS, rnr, table, cnt);
}
#endif
#endif

View File

@@ -0,0 +1,337 @@
/******************************************************************************
* @file pmu_armv8.h
* @brief CMSIS PMU API for Armv8.1-M PMU
* @version V1.0.0
* @date 24. March 2020
******************************************************************************/
/*
* Copyright (c) 2020 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef ARM_PMU_ARMV8_H
#define ARM_PMU_ARMV8_H
/**
* \brief PMU Events
* \note See the Armv8.1-M Architecture Reference Manual for full details on these PMU events.
* */
#define ARM_PMU_SW_INCR 0x0000 /*!< Software update to the PMU_SWINC register, architecturally executed and condition code check pass */
#define ARM_PMU_L1I_CACHE_REFILL 0x0001 /*!< L1 I-Cache refill */
#define ARM_PMU_L1D_CACHE_REFILL 0x0003 /*!< L1 D-Cache refill */
#define ARM_PMU_L1D_CACHE 0x0004 /*!< L1 D-Cache access */
#define ARM_PMU_LD_RETIRED 0x0006 /*!< Memory-reading instruction architecturally executed and condition code check pass */
#define ARM_PMU_ST_RETIRED 0x0007 /*!< Memory-writing instruction architecturally executed and condition code check pass */
#define ARM_PMU_INST_RETIRED 0x0008 /*!< Instruction architecturally executed */
#define ARM_PMU_EXC_TAKEN 0x0009 /*!< Exception entry */
#define ARM_PMU_EXC_RETURN 0x000A /*!< Exception return instruction architecturally executed and the condition code check pass */
#define ARM_PMU_PC_WRITE_RETIRED 0x000C /*!< Software change to the Program Counter (PC). Instruction is architecturally executed and condition code check pass */
#define ARM_PMU_BR_IMMED_RETIRED 0x000D /*!< Immediate branch architecturally executed */
#define ARM_PMU_BR_RETURN_RETIRED 0x000E /*!< Function return instruction architecturally executed and the condition code check pass */
#define ARM_PMU_UNALIGNED_LDST_RETIRED 0x000F /*!< Unaligned memory memory-reading or memory-writing instruction architecturally executed and condition code check pass */
#define ARM_PMU_BR_MIS_PRED 0x0010 /*!< Mispredicted or not predicted branch speculatively executed */
#define ARM_PMU_CPU_CYCLES 0x0011 /*!< Cycle */
#define ARM_PMU_BR_PRED 0x0012 /*!< Predictable branch speculatively executed */
#define ARM_PMU_MEM_ACCESS 0x0013 /*!< Data memory access */
#define ARM_PMU_L1I_CACHE 0x0014 /*!< Level 1 instruction cache access */
#define ARM_PMU_L1D_CACHE_WB 0x0015 /*!< Level 1 data cache write-back */
#define ARM_PMU_L2D_CACHE 0x0016 /*!< Level 2 data cache access */
#define ARM_PMU_L2D_CACHE_REFILL 0x0017 /*!< Level 2 data cache refill */
#define ARM_PMU_L2D_CACHE_WB 0x0018 /*!< Level 2 data cache write-back */
#define ARM_PMU_BUS_ACCESS 0x0019 /*!< Bus access */
#define ARM_PMU_MEMORY_ERROR 0x001A /*!< Local memory error */
#define ARM_PMU_INST_SPEC 0x001B /*!< Instruction speculatively executed */
#define ARM_PMU_BUS_CYCLES 0x001D /*!< Bus cycles */
#define ARM_PMU_CHAIN 0x001E /*!< For an odd numbered counter, increment when an overflow occurs on the preceding even-numbered counter on the same PE */
#define ARM_PMU_L1D_CACHE_ALLOCATE 0x001F /*!< Level 1 data cache allocation without refill */
#define ARM_PMU_L2D_CACHE_ALLOCATE 0x0020 /*!< Level 2 data cache allocation without refill */
#define ARM_PMU_BR_RETIRED 0x0021 /*!< Branch instruction architecturally executed */
#define ARM_PMU_BR_MIS_PRED_RETIRED 0x0022 /*!< Mispredicted branch instruction architecturally executed */
#define ARM_PMU_STALL_FRONTEND 0x0023 /*!< No operation issued because of the frontend */
#define ARM_PMU_STALL_BACKEND 0x0024 /*!< No operation issued because of the backend */
#define ARM_PMU_L2I_CACHE 0x0027 /*!< Level 2 instruction cache access */
#define ARM_PMU_L2I_CACHE_REFILL 0x0028 /*!< Level 2 instruction cache refill */
#define ARM_PMU_L3D_CACHE_ALLOCATE 0x0029 /*!< Level 3 data cache allocation without refill */
#define ARM_PMU_L3D_CACHE_REFILL 0x002A /*!< Level 3 data cache refill */
#define ARM_PMU_L3D_CACHE 0x002B /*!< Level 3 data cache access */
#define ARM_PMU_L3D_CACHE_WB 0x002C /*!< Level 3 data cache write-back */
#define ARM_PMU_LL_CACHE_RD 0x0036 /*!< Last level data cache read */
#define ARM_PMU_LL_CACHE_MISS_RD 0x0037 /*!< Last level data cache read miss */
#define ARM_PMU_L1D_CACHE_MISS_RD 0x0039 /*!< Level 1 data cache read miss */
#define ARM_PMU_OP_COMPLETE 0x003A /*!< Operation retired */
#define ARM_PMU_OP_SPEC 0x003B /*!< Operation speculatively executed */
#define ARM_PMU_STALL 0x003C /*!< Stall cycle for instruction or operation not sent for execution */
#define ARM_PMU_STALL_OP_BACKEND 0x003D /*!< Stall cycle for instruction or operation not sent for execution due to pipeline backend */
#define ARM_PMU_STALL_OP_FRONTEND 0x003E /*!< Stall cycle for instruction or operation not sent for execution due to pipeline frontend */
#define ARM_PMU_STALL_OP 0x003F /*!< Instruction or operation slots not occupied each cycle */
#define ARM_PMU_L1D_CACHE_RD 0x0040 /*!< Level 1 data cache read */
#define ARM_PMU_LE_RETIRED 0x0100 /*!< Loop end instruction executed */
#define ARM_PMU_LE_SPEC 0x0101 /*!< Loop end instruction speculatively executed */
#define ARM_PMU_BF_RETIRED 0x0104 /*!< Branch future instruction architecturally executed and condition code check pass */
#define ARM_PMU_BF_SPEC 0x0105 /*!< Branch future instruction speculatively executed and condition code check pass */
#define ARM_PMU_LE_CANCEL 0x0108 /*!< Loop end instruction not taken */
#define ARM_PMU_BF_CANCEL 0x0109 /*!< Branch future instruction not taken */
#define ARM_PMU_SE_CALL_S 0x0114 /*!< Call to secure function, resulting in Security state change */
#define ARM_PMU_SE_CALL_NS 0x0115 /*!< Call to non-secure function, resulting in Security state change */
#define ARM_PMU_DWT_CMPMATCH0 0x0118 /*!< DWT comparator 0 match */
#define ARM_PMU_DWT_CMPMATCH1 0x0119 /*!< DWT comparator 1 match */
#define ARM_PMU_DWT_CMPMATCH2 0x011A /*!< DWT comparator 2 match */
#define ARM_PMU_DWT_CMPMATCH3 0x011B /*!< DWT comparator 3 match */
#define ARM_PMU_MVE_INST_RETIRED 0x0200 /*!< MVE instruction architecturally executed */
#define ARM_PMU_MVE_INST_SPEC 0x0201 /*!< MVE instruction speculatively executed */
#define ARM_PMU_MVE_FP_RETIRED 0x0204 /*!< MVE floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_SPEC 0x0205 /*!< MVE floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_HP_RETIRED 0x0208 /*!< MVE half-precision floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_HP_SPEC 0x0209 /*!< MVE half-precision floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_SP_RETIRED 0x020C /*!< MVE single-precision floating-point instruction architecturally executed */
#define ARM_PMU_MVE_FP_SP_SPEC 0x020D /*!< MVE single-precision floating-point instruction speculatively executed */
#define ARM_PMU_MVE_FP_MAC_RETIRED 0x0214 /*!< MVE floating-point multiply or multiply-accumulate instruction architecturally executed */
#define ARM_PMU_MVE_FP_MAC_SPEC 0x0215 /*!< MVE floating-point multiply or multiply-accumulate instruction speculatively executed */
#define ARM_PMU_MVE_INT_RETIRED 0x0224 /*!< MVE integer instruction architecturally executed */
#define ARM_PMU_MVE_INT_SPEC 0x0225 /*!< MVE integer instruction speculatively executed */
#define ARM_PMU_MVE_INT_MAC_RETIRED 0x0228 /*!< MVE multiply or multiply-accumulate instruction architecturally executed */
#define ARM_PMU_MVE_INT_MAC_SPEC 0x0229 /*!< MVE multiply or multiply-accumulate instruction speculatively executed */
#define ARM_PMU_MVE_LDST_RETIRED 0x0238 /*!< MVE load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_SPEC 0x0239 /*!< MVE load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_RETIRED 0x023C /*!< MVE load instruction architecturally executed */
#define ARM_PMU_MVE_LD_SPEC 0x023D /*!< MVE load instruction speculatively executed */
#define ARM_PMU_MVE_ST_RETIRED 0x0240 /*!< MVE store instruction architecturally executed */
#define ARM_PMU_MVE_ST_SPEC 0x0241 /*!< MVE store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_CONTIG_RETIRED 0x0244 /*!< MVE contiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_CONTIG_SPEC 0x0245 /*!< MVE contiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_CONTIG_RETIRED 0x0248 /*!< MVE contiguous load instruction architecturally executed */
#define ARM_PMU_MVE_LD_CONTIG_SPEC 0x0249 /*!< MVE contiguous load instruction speculatively executed */
#define ARM_PMU_MVE_ST_CONTIG_RETIRED 0x024C /*!< MVE contiguous store instruction architecturally executed */
#define ARM_PMU_MVE_ST_CONTIG_SPEC 0x024D /*!< MVE contiguous store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_NONCONTIG_RETIRED 0x0250 /*!< MVE non-contiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_NONCONTIG_SPEC 0x0251 /*!< MVE non-contiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_NONCONTIG_RETIRED 0x0254 /*!< MVE non-contiguous load instruction architecturally executed */
#define ARM_PMU_MVE_LD_NONCONTIG_SPEC 0x0255 /*!< MVE non-contiguous load instruction speculatively executed */
#define ARM_PMU_MVE_ST_NONCONTIG_RETIRED 0x0258 /*!< MVE non-contiguous store instruction architecturally executed */
#define ARM_PMU_MVE_ST_NONCONTIG_SPEC 0x0259 /*!< MVE non-contiguous store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_MULTI_RETIRED 0x025C /*!< MVE memory instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_LDST_MULTI_SPEC 0x025D /*!< MVE memory instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_LD_MULTI_RETIRED 0x0260 /*!< MVE memory load instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_LD_MULTI_SPEC 0x0261 /*!< MVE memory load instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_ST_MULTI_RETIRED 0x0261 /*!< MVE memory store instruction targeting multiple registers architecturally executed */
#define ARM_PMU_MVE_ST_MULTI_SPEC 0x0265 /*!< MVE memory store instruction targeting multiple registers speculatively executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_RETIRED 0x028C /*!< MVE unaligned memory load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_SPEC 0x028D /*!< MVE unaligned memory load or store instruction speculatively executed */
#define ARM_PMU_MVE_LD_UNALIGNED_RETIRED 0x0290 /*!< MVE unaligned load instruction architecturally executed */
#define ARM_PMU_MVE_LD_UNALIGNED_SPEC 0x0291 /*!< MVE unaligned load instruction speculatively executed */
#define ARM_PMU_MVE_ST_UNALIGNED_RETIRED 0x0294 /*!< MVE unaligned store instruction architecturally executed */
#define ARM_PMU_MVE_ST_UNALIGNED_SPEC 0x0295 /*!< MVE unaligned store instruction speculatively executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_NONCONTIG_RETIRED 0x0298 /*!< MVE unaligned noncontiguous load or store instruction architecturally executed */
#define ARM_PMU_MVE_LDST_UNALIGNED_NONCONTIG_SPEC 0x0299 /*!< MVE unaligned noncontiguous load or store instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_RETIRED 0x02A0 /*!< MVE vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_SPEC 0x02A1 /*!< MVE vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_FP_RETIRED 0x02A4 /*!< MVE floating-point vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_FP_SPEC 0x02A5 /*!< MVE floating-point vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_VREDUCE_INT_RETIRED 0x02A8 /*!< MVE integer vector reduction instruction architecturally executed */
#define ARM_PMU_MVE_VREDUCE_INT_SPEC 0x02A9 /*!< MVE integer vector reduction instruction speculatively executed */
#define ARM_PMU_MVE_PRED 0x02B8 /*!< Cycles where one or more predicated beats architecturally executed */
#define ARM_PMU_MVE_STALL 0x02CC /*!< Stall cycles caused by an MVE instruction */
#define ARM_PMU_MVE_STALL_RESOURCE 0x02CD /*!< Stall cycles caused by an MVE instruction because of resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_MEM 0x02CE /*!< Stall cycles caused by an MVE instruction because of memory resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_FP 0x02CF /*!< Stall cycles caused by an MVE instruction because of floating-point resource conflicts */
#define ARM_PMU_MVE_STALL_RESOURCE_INT 0x02D0 /*!< Stall cycles caused by an MVE instruction because of integer resource conflicts */
#define ARM_PMU_MVE_STALL_BREAK 0x02D3 /*!< Stall cycles caused by an MVE chain break */
#define ARM_PMU_MVE_STALL_DEPENDENCY 0x02D4 /*!< Stall cycles caused by MVE register dependency */
#define ARM_PMU_ITCM_ACCESS 0x4007 /*!< Instruction TCM access */
#define ARM_PMU_DTCM_ACCESS 0x4008 /*!< Data TCM access */
#define ARM_PMU_TRCEXTOUT0 0x4010 /*!< ETM external output 0 */
#define ARM_PMU_TRCEXTOUT1 0x4011 /*!< ETM external output 1 */
#define ARM_PMU_TRCEXTOUT2 0x4012 /*!< ETM external output 2 */
#define ARM_PMU_TRCEXTOUT3 0x4013 /*!< ETM external output 3 */
#define ARM_PMU_CTI_TRIGOUT4 0x4018 /*!< Cross-trigger Interface output trigger 4 */
#define ARM_PMU_CTI_TRIGOUT5 0x4019 /*!< Cross-trigger Interface output trigger 5 */
#define ARM_PMU_CTI_TRIGOUT6 0x401A /*!< Cross-trigger Interface output trigger 6 */
#define ARM_PMU_CTI_TRIGOUT7 0x401B /*!< Cross-trigger Interface output trigger 7 */
/** \brief PMU Functions */
__STATIC_INLINE void ARM_PMU_Enable(void);
__STATIC_INLINE void ARM_PMU_Disable(void);
__STATIC_INLINE void ARM_PMU_Set_EVTYPER(uint32_t num, uint32_t type);
__STATIC_INLINE void ARM_PMU_CYCCNT_Reset(void);
__STATIC_INLINE void ARM_PMU_EVCNTR_ALL_Reset(void);
__STATIC_INLINE void ARM_PMU_CNTR_Enable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_CNTR_Disable(uint32_t mask);
__STATIC_INLINE uint32_t ARM_PMU_Get_CCNTR(void);
__STATIC_INLINE uint32_t ARM_PMU_Get_EVCNTR(uint32_t num);
__STATIC_INLINE uint32_t ARM_PMU_Get_CNTR_OVS(void);
__STATIC_INLINE void ARM_PMU_Set_CNTR_OVS(uint32_t mask);
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Enable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Disable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_CNTR_Increment(uint32_t mask);
/**
\brief Enable the PMU
*/
__STATIC_INLINE void ARM_PMU_Enable(void)
{
PMU->CTRL |= PMU_CTRL_ENABLE_Msk;
}
/**
\brief Disable the PMU
*/
__STATIC_INLINE void ARM_PMU_Disable(void)
{
PMU->CTRL &= ~PMU_CTRL_ENABLE_Msk;
}
/**
\brief Set event to count for PMU eventer counter
\param [in] num Event counter (0-30) to configure
\param [in] type Event to count
*/
__STATIC_INLINE void ARM_PMU_Set_EVTYPER(uint32_t num, uint32_t type)
{
PMU->EVTYPER[num] = type;
}
/**
\brief Reset cycle counter
*/
__STATIC_INLINE void ARM_PMU_CYCCNT_Reset(void)
{
PMU->CTRL |= PMU_CTRL_CYCCNT_RESET_Msk;
}
/**
\brief Reset all event counters
*/
__STATIC_INLINE void ARM_PMU_EVCNTR_ALL_Reset(void)
{
PMU->CTRL |= PMU_CTRL_EVENTCNT_RESET_Msk;
}
/**
\brief Enable counters
\param [in] mask Counters to enable
\note Enables one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_CNTR_Enable(uint32_t mask)
{
PMU->CNTENSET = mask;
}
/**
\brief Disable counters
\param [in] mask Counters to enable
\note Disables one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_CNTR_Disable(uint32_t mask)
{
PMU->CNTENCLR = mask;
}
/**
\brief Read cycle counter
\return Cycle count
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_CCNTR(void)
{
return PMU->CCNTR;
}
/**
\brief Read event counter
\param [in] num Event counter (0-30) to read
\return Event count
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_EVCNTR(uint32_t num)
{
return PMU->EVCNTR[num];
}
/**
\brief Read counter overflow status
\return Counter overflow status bits for the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE uint32_t ARM_PMU_Get_CNTR_OVS(void)
{
return PMU->OVSSET;
}
/**
\brief Clear counter overflow status
\param [in] mask Counter overflow status bits to clear
\note Clears overflow status bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_OVS(uint32_t mask)
{
PMU->OVSCLR = mask;
}
/**
\brief Enable counter overflow interrupt request
\param [in] mask Counter overflow interrupt request bits to set
\note Sets overflow interrupt request bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Enable(uint32_t mask)
{
PMU->INTENSET = mask;
}
/**
\brief Disable counter overflow interrupt request
\param [in] mask Counter overflow interrupt request bits to clear
\note Clears overflow interrupt request bits for one or more of the following:
- event counters (0-30)
- cycle counter
*/
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Disable(uint32_t mask)
{
PMU->INTENCLR = mask;
}
/**
\brief Software increment event counter
\param [in] mask Counters to increment
\note Software increment bits for one or more event counters (0-30)
*/
__STATIC_INLINE void ARM_PMU_CNTR_Increment(uint32_t mask)
{
PMU->SWINC = mask;
}
#endif

View File

@@ -0,0 +1,70 @@
/******************************************************************************
* @file tz_context.h
* @brief Context Management for Armv8-M TrustZone
* @version V1.0.1
* @date 10. January 2018
******************************************************************************/
/*
* Copyright (c) 2017-2018 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#elif defined (__clang__)
#pragma clang system_header /* treat file as system include file */
#endif
#ifndef TZ_CONTEXT_H
#define TZ_CONTEXT_H
#include <stdint.h>
#ifndef TZ_MODULEID_T
#define TZ_MODULEID_T
/// \details Data type that identifies secure software modules called by a process.
typedef uint32_t TZ_ModuleId_t;
#endif
/// \details TZ Memory ID identifies an allocated memory slot.
typedef uint32_t TZ_MemoryId_t;
/// Initialize secure context memory system
/// \return execution status (1: success, 0: error)
uint32_t TZ_InitContextSystem_S (void);
/// Allocate context memory for calling secure software modules in TrustZone
/// \param[in] module identifies software modules called from non-secure mode
/// \return value != 0 id TrustZone memory slot identifier
/// \return value 0 no memory available or internal error
TZ_MemoryId_t TZ_AllocModuleContext_S (TZ_ModuleId_t module);
/// Free context memory that was previously allocated with \ref TZ_AllocModuleContext_S
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_FreeModuleContext_S (TZ_MemoryId_t id);
/// Load secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_LoadContext_S (TZ_MemoryId_t id);
/// Store secure context (called on RTOS thread context switch)
/// \param[in] id TrustZone memory slot identifier
/// \return execution status (1: success, 0: error)
uint32_t TZ_StoreContext_S (TZ_MemoryId_t id);
#endif // TZ_CONTEXT_H

View File

@@ -0,0 +1,456 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Configuration
* Title: DAP_config.h CMSIS-DAP Configuration File (Template)
*
*---------------------------------------------------------------------------*/
#ifndef __DAP_CONFIG_H__
#define __DAP_CONFIG_H__
//**************************************************************************************************
/**
\defgroup DAP_Config_Debug_gr CMSIS-DAP Debug Unit Information
\ingroup DAP_ConfigIO_gr
@{
Provides definitions about the hardware and configuration of the Debug Unit.
This information includes:
- Definition of Cortex-M processor parameters used in CMSIS-DAP Debug Unit.
- Debug Unit Identification strings (Vendor, Product, Serial Number).
- Debug Unit communication packet size.
- Debug Access Port supported modes and settings (JTAG/SWD and SWO).
- Optional information about a connected Target Device (for Evaluation Boards).
*/
#ifdef _RTE_
#include "RTE_Components.h"
#include CMSIS_device_header
#else
#include "device.h" // Debug Unit Cortex-M Processor Header File
#endif
/// Processor Clock of the Cortex-M MCU used in the Debug Unit.
/// This value is used to calculate the SWD/JTAG clock speed.
#define CPU_CLOCK 100000000U ///< Specifies the CPU Clock in Hz.
/// Number of processor cycles for I/O Port write operations.
/// This value is used to calculate the SWD/JTAG clock speed that is generated with I/O
/// Port write operations in the Debug Unit by a Cortex-M MCU. Most Cortex-M processors
/// require 2 processor cycles for a I/O Port Write operation. If the Debug Unit uses
/// a Cortex-M0+ processor with high-speed peripheral I/O only 1 processor cycle might be
/// required.
#define IO_PORT_WRITE_CYCLES 2U ///< I/O Cycles: 2=default, 1=Cortex-M0+ fast I/0.
/// Indicate that Serial Wire Debug (SWD) communication mode is available at the Debug Access Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_SWD 1 ///< SWD Mode: 1 = available, 0 = not available.
/// Indicate that JTAG communication mode is available at the Debug Port.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define DAP_JTAG 1 ///< JTAG Mode: 1 = available, 0 = not available.
/// Configure maximum number of JTAG devices on the scan chain connected to the Debug Access Port.
/// This setting impacts the RAM requirements of the Debug Unit. Valid range is 1 .. 255.
#define DAP_JTAG_DEV_CNT 8U ///< Maximum number of JTAG devices on scan chain.
/// Default communication mode on the Debug Access Port.
/// Used for the command \ref DAP_Connect when Port Default mode is selected.
#define DAP_DEFAULT_PORT 1U ///< Default JTAG/SWJ Port Mode: 1 = SWD, 2 = JTAG.
/// Default communication speed on the Debug Access Port for SWD and JTAG mode.
/// Used to initialize the default SWD/JTAG clock frequency.
/// The command \ref DAP_SWJ_Clock can be used to overwrite this default setting.
#define DAP_DEFAULT_SWJ_CLOCK 1000000U ///< Default SWD/JTAG clock frequency in Hz.
/// Maximum Package Size for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. Typical vales are 64 for Full-speed USB HID or WinUSB,
/// 1024 for High-speed USB HID and 512 for High-speed USB WinUSB.
#define DAP_PACKET_SIZE 512U ///< Specifies Packet Size in bytes.
/// Maximum Package Buffers for Command and Response data.
/// This configuration settings is used to optimize the communication performance with the
/// debugger and depends on the USB peripheral. For devices with limited RAM or USB buffer the
/// setting can be reduced (valid range is 1 .. 255).
#define DAP_PACKET_COUNT 8U ///< Specifies number of packets buffered.
/// Indicate that UART Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_UART 1 ///< SWO UART: 1 = available, 0 = not available.
/// Maximum SWO UART Baudrate.
#define SWO_UART_MAX_BAUDRATE 10000000U ///< SWO UART Maximum Baudrate in Hz.
/// Indicate that Manchester Serial Wire Output (SWO) trace is available.
/// This information is returned by the command \ref DAP_Info as part of <b>Capabilities</b>.
#define SWO_MANCHESTER 0 ///< SWO Manchester: 1 = available, 0 = not available.
/// SWO Trace Buffer Size.
#define SWO_BUFFER_SIZE 4096U ///< SWO Trace Buffer Size in bytes (must be 2^n).
/// SWO Streaming Trace.
#define SWO_STREAM 0 ///< SWO Streaming Trace: 1 = available, 0 = not available.
/// Clock frequency of the Test Domain Timer. Timer value is returned with \ref TIMESTAMP_GET.
#define TIMESTAMP_CLOCK 100000000U ///< Timestamp clock in Hz (0 = timestamps not supported).
/// Debug Unit is connected to fixed Target Device.
/// The Debug Unit may be part of an evaluation board and always connected to a fixed
/// known device. In this case a Device Vendor and Device Name string is stored which
/// may be used by the debugger or IDE to configure device parameters.
#define TARGET_DEVICE_FIXED 0 ///< Target Device: 1 = known, 0 = unknown;
#if TARGET_DEVICE_FIXED
#define TARGET_DEVICE_VENDOR "ARM" ///< String indicating the Silicon Vendor
#define TARGET_DEVICE_NAME "Cortex-M4" ///< String indicating the Target Device
#endif
/** Get Vendor ID string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetVendorString (char *str) {
(void)str;
return (0U);
}
/** Get Product ID string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetProductString (char *str) {
(void)str;
return (0U);
}
/** Get Serial Number string.
\param str Pointer to buffer to store the string.
\return String length.
*/
__STATIC_INLINE uint8_t DAP_GetSerNumString (char *str) {
(void)str;
return (0U);
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_PortIO_gr CMSIS-DAP Hardware I/O Pin Access
\ingroup DAP_ConfigIO_gr
@{
Standard I/O Pins of the CMSIS-DAP Hardware Debug Port support standard JTAG mode
and Serial Wire Debug (SWD) mode. In SWD mode only 2 pins are required to implement the debug
interface of a device. The following I/O Pins are provided:
JTAG I/O Pin | SWD I/O Pin | CMSIS-DAP Hardware pin mode
---------------------------- | -------------------- | ---------------------------------------------
TCK: Test Clock | SWCLK: Clock | Output Push/Pull
TMS: Test Mode Select | SWDIO: Data I/O | Output Push/Pull; Input (for receiving data)
TDI: Test Data Input | | Output Push/Pull
TDO: Test Data Output | | Input
nTRST: Test Reset (optional) | | Output Open Drain with pull-up resistor
nRESET: Device Reset | nRESET: Device Reset | Output Open Drain with pull-up resistor
DAP Hardware I/O Pin Access Functions
-------------------------------------
The various I/O Pins are accessed by functions that implement the Read, Write, Set, or Clear to
these I/O Pins.
For the SWDIO I/O Pin there are additional functions that are called in SWD I/O mode only.
This functions are provided to achieve faster I/O that is possible with some advanced GPIO
peripherals that can independently write/read a single I/O pin without affecting any other pins
of the same I/O port. The following SWDIO I/O Pin functions are provided:
- \ref PIN_SWDIO_OUT_ENABLE to enable the output mode from the DAP hardware.
- \ref PIN_SWDIO_OUT_DISABLE to enable the input mode to the DAP hardware.
- \ref PIN_SWDIO_IN to read from the SWDIO I/O pin with utmost possible speed.
- \ref PIN_SWDIO_OUT to write to the SWDIO I/O pin with utmost possible speed.
*/
// Configure DAP I/O pins ------------------------------
/** Setup JTAG I/O pins: TCK, TMS, TDI, TDO, nTRST, and nRESET.
Configures the DAP Hardware I/O pins for JTAG mode:
- TCK, TMS, TDI, nTRST, nRESET to output mode and set to high level.
- TDO to input mode.
*/
__STATIC_INLINE void PORT_JTAG_SETUP (void) {
;
}
/** Setup SWD I/O pins: SWCLK, SWDIO, and nRESET.
Configures the DAP Hardware I/O pins for Serial Wire Debug (SWD) mode:
- SWCLK, SWDIO, nRESET to output mode and set to default high level.
- TDI, nTRST to HighZ mode (pins are unused in SWD mode).
*/
__STATIC_INLINE void PORT_SWD_SETUP (void) {
;
}
/** Disable JTAG/SWD I/O Pins.
Disables the DAP Hardware I/O pins which configures:
- TCK/SWCLK, TMS/SWDIO, TDI, TDO, nTRST, nRESET to High-Z mode.
*/
__STATIC_INLINE void PORT_OFF (void) {
;
}
// SWCLK/TCK I/O pin -------------------------------------
/** SWCLK/TCK I/O pin: Get Input.
\return Current status of the SWCLK/TCK DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN (void) {
return (0U);
}
/** SWCLK/TCK I/O pin: Set Output to High.
Set the SWCLK/TCK DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET (void) {
;
}
/** SWCLK/TCK I/O pin: Set Output to Low.
Set the SWCLK/TCK DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR (void) {
;
}
// SWDIO/TMS Pin I/O --------------------------------------
/** SWDIO/TMS I/O pin: Get Input.
\return Current status of the SWDIO/TMS DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN (void) {
return (0U);
}
/** SWDIO/TMS I/O pin: Set Output to High.
Set the SWDIO/TMS DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET (void) {
;
}
/** SWDIO/TMS I/O pin: Set Output to Low.
Set the SWDIO/TMS DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR (void) {
;
}
/** SWDIO I/O pin: Get Input (used in SWD mode only).
\return Current status of the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN (void) {
return (0U);
}
/** SWDIO I/O pin: Set Output (used in SWD mode only).
\param bit Output value for the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT (uint32_t bit) {
;
}
/** SWDIO I/O pin: Switch to Output mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to output mode. This function is
called prior \ref PIN_SWDIO_OUT function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE (void) {
;
}
/** SWDIO I/O pin: Switch to Input mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to input mode. This function is
called prior \ref PIN_SWDIO_IN function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE (void) {
;
}
// TDI Pin I/O ---------------------------------------------
/** TDI I/O pin: Get Input.
\return Current status of the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDI_IN (void) {
return (0U);
}
/** TDI I/O pin: Set Output.
\param bit Output value for the TDI DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_TDI_OUT (uint32_t bit) {
;
}
// TDO Pin I/O ---------------------------------------------
/** TDO I/O pin: Get Input.
\return Current status of the TDO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_TDO_IN (void) {
return (0U);
}
// nTRST Pin I/O -------------------------------------------
/** nTRST I/O pin: Get Input.
\return Current status of the nTRST DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nTRST_IN (void) {
return (0U);
}
/** nTRST I/O pin: Set Output.
\param bit JTAG TRST Test Reset pin status:
- 0: issue a JTAG TRST Test Reset.
- 1: release JTAG TRST Test Reset.
*/
__STATIC_FORCEINLINE void PIN_nTRST_OUT (uint32_t bit) {
;
}
// nRESET Pin I/O------------------------------------------
/** nRESET I/O pin: Get Input.
\return Current status of the nRESET DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_nRESET_IN (void) {
return (0U);
}
/** nRESET I/O pin: Set Output.
\param bit target device hardware reset pin status:
- 0: issue a device hardware reset.
- 1: release device hardware reset.
*/
__STATIC_FORCEINLINE void PIN_nRESET_OUT (uint32_t bit) {
;
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_LEDs_gr CMSIS-DAP Hardware Status LEDs
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware may provide LEDs that indicate the status of the CMSIS-DAP Debug Unit.
It is recommended to provide the following LEDs for status indication:
- Connect LED: is active when the DAP hardware is connected to a debugger.
- Running LED: is active when the debugger has put the target device into running state.
*/
/** Debug Unit: Set status of Connected LED.
\param bit status of the Connect LED.
- 1: Connect LED ON: debugger is connected to CMSIS-DAP Debug Unit.
- 0: Connect LED OFF: debugger is not connected to CMSIS-DAP Debug Unit.
*/
__STATIC_INLINE void LED_CONNECTED_OUT (uint32_t bit) {}
/** Debug Unit: Set status Target Running LED.
\param bit status of the Target Running LED.
- 1: Target Running LED ON: program execution in target started.
- 0: Target Running LED OFF: program execution in target stopped.
*/
__STATIC_INLINE void LED_RUNNING_OUT (uint32_t bit) {}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Timestamp_gr CMSIS-DAP Timestamp
\ingroup DAP_ConfigIO_gr
@{
Access function for Test Domain Timer.
The value of the Test Domain Timer in the Debug Unit is returned by the function \ref TIMESTAMP_GET. By
default, the DWT timer is used. The frequency of this timer is configured with \ref TIMESTAMP_CLOCK.
*/
/** Get timestamp of Test Domain Timer.
\return Current timestamp value.
*/
__STATIC_INLINE uint32_t TIMESTAMP_GET (void) {
return (DWT->CYCCNT);
}
///@}
//**************************************************************************************************
/**
\defgroup DAP_Config_Initialization_gr CMSIS-DAP Initialization
\ingroup DAP_ConfigIO_gr
@{
CMSIS-DAP Hardware I/O and LED Pins are initialized with the function \ref DAP_SETUP.
*/
/** Setup of the Debug Unit I/O pins and LEDs (called when Debug Unit is initialized).
This function performs the initialization of the CMSIS-DAP Hardware I/O Pins and the
Status LEDs. In detail the operation of Hardware I/O and LED pins are enabled and set:
- I/O clock system enabled.
- all I/O pins: input buffer enabled, output pins are set to HighZ mode.
- for nTRST, nRESET a weak pull-up (if available) is enabled.
- LED output pins are enabled and LEDs are turned off.
*/
__STATIC_INLINE void DAP_SETUP (void) {
;
}
/** Reset Target Device with custom specific I/O pin or command sequence.
This function allows the optional implementation of a device specific reset sequence.
It is called when the command \ref DAP_ResetTarget and is for example required
when a device needs a time-critical unlock sequence that enables the debug port.
\return 0 = no device specific reset sequence is implemented.\n
1 = a device specific reset sequence is implemented.
*/
__STATIC_INLINE uint8_t RESET_TARGET (void) {
return (0U); // change to '1' when a device reset sequence is implemented
}
///@}
#endif /* __DAP_CONFIG_H__ */

View File

@@ -0,0 +1,325 @@
/*
* Copyright (c) 2013-2019 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 26. November 2019
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Include
* Title: DAP.h Definitions
*
*---------------------------------------------------------------------------*/
#ifndef __DAP_H__
#define __DAP_H__
// DAP Firmware Version
#ifdef DAP_FW_V1
#define DAP_FW_VER "1.2.0"
#else
#define DAP_FW_VER "2.0.0"
#endif
// DAP Command IDs
#define ID_DAP_Info 0x00U
#define ID_DAP_HostStatus 0x01U
#define ID_DAP_Connect 0x02U
#define ID_DAP_Disconnect 0x03U
#define ID_DAP_TransferConfigure 0x04U
#define ID_DAP_Transfer 0x05U
#define ID_DAP_TransferBlock 0x06U
#define ID_DAP_TransferAbort 0x07U
#define ID_DAP_WriteABORT 0x08U
#define ID_DAP_Delay 0x09U
#define ID_DAP_ResetTarget 0x0AU
#define ID_DAP_SWJ_Pins 0x10U
#define ID_DAP_SWJ_Clock 0x11U
#define ID_DAP_SWJ_Sequence 0x12U
#define ID_DAP_SWD_Configure 0x13U
#define ID_DAP_SWD_Sequence 0x1DU
#define ID_DAP_JTAG_Sequence 0x14U
#define ID_DAP_JTAG_Configure 0x15U
#define ID_DAP_JTAG_IDCODE 0x16U
#define ID_DAP_SWO_Transport 0x17U
#define ID_DAP_SWO_Mode 0x18U
#define ID_DAP_SWO_Baudrate 0x19U
#define ID_DAP_SWO_Control 0x1AU
#define ID_DAP_SWO_Status 0x1BU
#define ID_DAP_SWO_ExtendedStatus 0x1EU
#define ID_DAP_SWO_Data 0x1CU
#define ID_DAP_QueueCommands 0x7EU
#define ID_DAP_ExecuteCommands 0x7FU
// DAP Vendor Command IDs
#define ID_DAP_Vendor0 0x80U
#define ID_DAP_Vendor1 0x81U
#define ID_DAP_Vendor2 0x82U
#define ID_DAP_Vendor3 0x83U
#define ID_DAP_Vendor4 0x84U
#define ID_DAP_Vendor5 0x85U
#define ID_DAP_Vendor6 0x86U
#define ID_DAP_Vendor7 0x87U
#define ID_DAP_Vendor8 0x88U
#define ID_DAP_Vendor9 0x89U
#define ID_DAP_Vendor10 0x8AU
#define ID_DAP_Vendor11 0x8BU
#define ID_DAP_Vendor12 0x8CU
#define ID_DAP_Vendor13 0x8DU
#define ID_DAP_Vendor14 0x8EU
#define ID_DAP_Vendor15 0x8FU
#define ID_DAP_Vendor16 0x90U
#define ID_DAP_Vendor17 0x91U
#define ID_DAP_Vendor18 0x92U
#define ID_DAP_Vendor19 0x93U
#define ID_DAP_Vendor20 0x94U
#define ID_DAP_Vendor21 0x95U
#define ID_DAP_Vendor22 0x96U
#define ID_DAP_Vendor23 0x97U
#define ID_DAP_Vendor24 0x98U
#define ID_DAP_Vendor25 0x99U
#define ID_DAP_Vendor26 0x9AU
#define ID_DAP_Vendor27 0x9BU
#define ID_DAP_Vendor28 0x9CU
#define ID_DAP_Vendor29 0x9DU
#define ID_DAP_Vendor30 0x9EU
#define ID_DAP_Vendor31 0x9FU
#define ID_DAP_Invalid 0xFFU
// DAP Status Code
#define DAP_OK 0U
#define DAP_ERROR 0xFFU
// DAP ID
#define DAP_ID_VENDOR 1U
#define DAP_ID_PRODUCT 2U
#define DAP_ID_SER_NUM 3U
#define DAP_ID_FW_VER 4U
#define DAP_ID_DEVICE_VENDOR 5U
#define DAP_ID_DEVICE_NAME 6U
#define DAP_ID_CAPABILITIES 0xF0U
#define DAP_ID_TIMESTAMP_CLOCK 0xF1U
#define DAP_ID_SWO_BUFFER_SIZE 0xFDU
#define DAP_ID_PACKET_COUNT 0xFEU
#define DAP_ID_PACKET_SIZE 0xFFU
// DAP Host Status
#define DAP_DEBUGGER_CONNECTED 0U
#define DAP_TARGET_RUNNING 1U
// DAP Port
#define DAP_PORT_AUTODETECT 0U // Autodetect Port
#define DAP_PORT_DISABLED 0U // Port Disabled (I/O pins in High-Z)
#define DAP_PORT_SWD 1U // SWD Port (SWCLK, SWDIO) + nRESET
#define DAP_PORT_JTAG 2U // JTAG Port (TCK, TMS, TDI, TDO, nTRST) + nRESET
// DAP SWJ Pins
#define DAP_SWJ_SWCLK_TCK 0 // SWCLK/TCK
#define DAP_SWJ_SWDIO_TMS 1 // SWDIO/TMS
#define DAP_SWJ_TDI 2 // TDI
#define DAP_SWJ_TDO 3 // TDO
#define DAP_SWJ_nTRST 5 // nTRST
#define DAP_SWJ_nRESET 7 // nRESET
// DAP Transfer Request
#define DAP_TRANSFER_APnDP (1U<<0)
#define DAP_TRANSFER_RnW (1U<<1)
#define DAP_TRANSFER_A2 (1U<<2)
#define DAP_TRANSFER_A3 (1U<<3)
#define DAP_TRANSFER_MATCH_VALUE (1U<<4)
#define DAP_TRANSFER_MATCH_MASK (1U<<5)
#define DAP_TRANSFER_TIMESTAMP (1U<<7)
// DAP Transfer Response
#define DAP_TRANSFER_OK (1U<<0)
#define DAP_TRANSFER_WAIT (1U<<1)
#define DAP_TRANSFER_FAULT (1U<<2)
#define DAP_TRANSFER_ERROR (1U<<3)
#define DAP_TRANSFER_MISMATCH (1U<<4)
// DAP SWO Trace Mode
#define DAP_SWO_OFF 0U
#define DAP_SWO_UART 1U
#define DAP_SWO_MANCHESTER 2U
// DAP SWO Trace Status
#define DAP_SWO_CAPTURE_ACTIVE (1U<<0)
#define DAP_SWO_CAPTURE_PAUSED (1U<<1)
#define DAP_SWO_STREAM_ERROR (1U<<6)
#define DAP_SWO_BUFFER_OVERRUN (1U<<7)
// Debug Port Register Addresses
#define DP_IDCODE 0x00U // IDCODE Register (SW Read only)
#define DP_ABORT 0x00U // Abort Register (SW Write only)
#define DP_CTRL_STAT 0x04U // Control & Status
#define DP_WCR 0x04U // Wire Control Register (SW Only)
#define DP_SELECT 0x08U // Select Register (JTAG R/W & SW W)
#define DP_RESEND 0x08U // Resend (SW Read Only)
#define DP_RDBUFF 0x0CU // Read Buffer (Read Only)
// JTAG IR Codes
#define JTAG_ABORT 0x08U
#define JTAG_DPACC 0x0AU
#define JTAG_APACC 0x0BU
#define JTAG_IDCODE 0x0EU
#define JTAG_BYPASS 0x0FU
// JTAG Sequence Info
#define JTAG_SEQUENCE_TCK 0x3FU // TCK count
#define JTAG_SEQUENCE_TMS 0x40U // TMS value
#define JTAG_SEQUENCE_TDO 0x80U // TDO capture
// SWD Sequence Info
#define SWD_SEQUENCE_CLK 0x3FU // SWCLK count
#define SWD_SEQUENCE_DIN 0x80U // SWDIO capture
#include <stddef.h>
#include <stdint.h>
#include "cmsis_compiler.h"
// DAP Data structure
typedef struct {
uint8_t debug_port; // Debug Port
uint8_t fast_clock; // Fast Clock Flag
uint8_t padding[2];
uint32_t clock_delay; // Clock Delay
uint32_t timestamp; // Last captured Timestamp
struct { // Transfer Configuration
uint8_t idle_cycles; // Idle cycles after transfer
uint8_t padding[3];
uint16_t retry_count; // Number of retries after WAIT response
uint16_t match_retry; // Number of retries if read value does not match
uint32_t match_mask; // Match Mask
} transfer;
#if (DAP_SWD != 0)
struct { // SWD Configuration
uint8_t turnaround; // Turnaround period
uint8_t data_phase; // Always generate Data Phase
} swd_conf;
#endif
#if (DAP_JTAG != 0)
struct { // JTAG Device Chain
uint8_t count; // Number of devices
uint8_t index; // Device index (device at TDO has index 0)
#if (DAP_JTAG_DEV_CNT != 0)
uint8_t ir_length[DAP_JTAG_DEV_CNT]; // IR Length in bits
uint16_t ir_before[DAP_JTAG_DEV_CNT]; // Bits before IR
uint16_t ir_after [DAP_JTAG_DEV_CNT]; // Bits after IR
#endif
} jtag_dev;
#endif
} DAP_Data_t;
extern DAP_Data_t DAP_Data; // DAP Data
extern volatile uint8_t DAP_TransferAbort; // Transfer Abort Flag
#ifdef __cplusplus
extern "C"
{
#endif
// Functions
extern void SWJ_Sequence (uint32_t count, const uint8_t *data);
extern void SWD_Sequence (uint32_t info, const uint8_t *swdo, uint8_t *swdi);
extern void JTAG_Sequence (uint32_t info, const uint8_t *tdi, uint8_t *tdo);
extern void JTAG_IR (uint32_t ir);
extern uint32_t JTAG_ReadIDCode (void);
extern void JTAG_WriteAbort (uint32_t data);
extern uint8_t JTAG_Transfer (uint32_t request, uint32_t *data);
extern uint8_t SWD_Transfer (uint32_t request, uint32_t *data);
extern void Delayms (uint32_t delay);
extern uint32_t SWO_Transport (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Mode (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Baudrate (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Control (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Status (uint8_t *response);
extern uint32_t SWO_ExtendedStatus (const uint8_t *request, uint8_t *response);
extern uint32_t SWO_Data (const uint8_t *request, uint8_t *response);
extern void SWO_QueueTransfer (uint8_t *buf, uint32_t num);
extern void SWO_AbortTransfer (void);
extern void SWO_TransferComplete (void);
extern uint32_t UART_SWO_Mode (uint32_t enable);
extern uint32_t UART_SWO_Baudrate (uint32_t baudrate);
extern uint32_t UART_SWO_Control (uint32_t active);
extern void UART_SWO_Capture (uint8_t *buf, uint32_t num);
extern uint32_t UART_SWO_GetCount (void);
extern uint32_t Manchester_SWO_Mode (uint32_t enable);
extern uint32_t Manchester_SWO_Baudrate (uint32_t baudrate);
extern uint32_t Manchester_SWO_Control (uint32_t active);
extern void Manchester_SWO_Capture (uint8_t *buf, uint32_t num);
extern uint32_t Manchester_SWO_GetCount (void);
extern uint32_t DAP_ProcessVendorCommand (const uint8_t *request, uint8_t *response);
extern uint32_t DAP_ProcessCommand (const uint8_t *request, uint8_t *response);
extern uint32_t DAP_ExecuteCommand (const uint8_t *request, uint8_t *response);
extern void DAP_Setup (void);
// Configurable delay for clock generation
#ifndef DELAY_SLOW_CYCLES
#define DELAY_SLOW_CYCLES 3U // Number of cycles for one iteration
#endif
#if defined(__CC_ARM)
__STATIC_FORCEINLINE void PIN_DELAY_SLOW (uint32_t delay) {
uint32_t count = delay;
while (--count);
}
#else
__STATIC_FORCEINLINE void PIN_DELAY_SLOW (uint32_t delay) {
__ASM volatile (
".syntax unified\n"
"0:\n\t"
"subs %0,%0,#1\n\t"
"bne 0b\n"
: "+l" (delay) : : "cc"
);
}
#endif
// Fixed delay for fast clock generation
#ifndef DELAY_FAST_CYCLES
#define DELAY_FAST_CYCLES 0U // Number of cycles: 0..3
#endif
__STATIC_FORCEINLINE void PIN_DELAY_FAST (void) {
#if (DELAY_FAST_CYCLES >= 1U)
__NOP();
#endif
#if (DELAY_FAST_CYCLES >= 2U)
__NOP();
#endif
#if (DELAY_FAST_CYCLES >= 3U)
__NOP();
#endif
}
#ifdef __cplusplus
}
#endif
#endif /* __DAP_H__ */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,100 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Source
* Title: DAP_vendor.c CMSIS-DAP Vendor Commands
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
//**************************************************************************************************
/**
\defgroup DAP_Vendor_Adapt_gr Adapt Vendor Commands
\ingroup DAP_Vendor_gr
@{
The file DAP_vendor.c provides template source code for extension of a Debug Unit with
Vendor Commands. Copy this file to the project folder of the Debug Unit and add the
file to the MDK-ARM project under the file group Configuration.
*/
/** Process DAP Vendor Command and prepare Response Data
\param request pointer to request data
\param response pointer to response data
\return number of bytes in response (lower 16 bits)
number of bytes in request (upper 16 bits)
*/
uint32_t DAP_ProcessVendorCommand(const uint8_t *request, uint8_t *response) {
uint32_t num = (1U << 16) | 1U;
*response++ = *request; // copy Command ID
switch (*request++) { // first byte in request is Command ID
case ID_DAP_Vendor0:
#if 0 // example user command
num += 1U << 16; // increment request count
if (*request == 1U) { // when first command data byte is 1
*response++ = 'X'; // send 'X' as response
num++; // increment response count
}
#endif
break;
case ID_DAP_Vendor1: break;
case ID_DAP_Vendor2: break;
case ID_DAP_Vendor3: break;
case ID_DAP_Vendor4: break;
case ID_DAP_Vendor5: break;
case ID_DAP_Vendor6: break;
case ID_DAP_Vendor7: break;
case ID_DAP_Vendor8: break;
case ID_DAP_Vendor9: break;
case ID_DAP_Vendor10: break;
case ID_DAP_Vendor11: break;
case ID_DAP_Vendor12: break;
case ID_DAP_Vendor13: break;
case ID_DAP_Vendor14: break;
case ID_DAP_Vendor15: break;
case ID_DAP_Vendor16: break;
case ID_DAP_Vendor17: break;
case ID_DAP_Vendor18: break;
case ID_DAP_Vendor19: break;
case ID_DAP_Vendor20: break;
case ID_DAP_Vendor21: break;
case ID_DAP_Vendor22: break;
case ID_DAP_Vendor23: break;
case ID_DAP_Vendor24: break;
case ID_DAP_Vendor25: break;
case ID_DAP_Vendor26: break;
case ID_DAP_Vendor27: break;
case ID_DAP_Vendor28: break;
case ID_DAP_Vendor29: break;
case ID_DAP_Vendor30: break;
case ID_DAP_Vendor31: break;
}
return (num);
}
///@}

View File

@@ -0,0 +1,370 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Source
* Title: JTAG_DP.c CMSIS-DAP JTAG DP I/O
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
// JTAG Macros
#define PIN_TCK_SET PIN_SWCLK_TCK_SET
#define PIN_TCK_CLR PIN_SWCLK_TCK_CLR
#define PIN_TMS_SET PIN_SWDIO_TMS_SET
#define PIN_TMS_CLR PIN_SWDIO_TMS_CLR
#define JTAG_CYCLE_TCK() \
PIN_TCK_CLR(); \
PIN_DELAY(); \
PIN_TCK_SET(); \
PIN_DELAY()
#define JTAG_CYCLE_TDI(tdi) \
PIN_TDI_OUT(tdi); \
PIN_TCK_CLR(); \
PIN_DELAY(); \
PIN_TCK_SET(); \
PIN_DELAY()
#define JTAG_CYCLE_TDO(tdo) \
PIN_TCK_CLR(); \
PIN_DELAY(); \
tdo = PIN_TDO_IN(); \
PIN_TCK_SET(); \
PIN_DELAY()
#define JTAG_CYCLE_TDIO(tdi,tdo) \
PIN_TDI_OUT(tdi); \
PIN_TCK_CLR(); \
PIN_DELAY(); \
tdo = PIN_TDO_IN(); \
PIN_TCK_SET(); \
PIN_DELAY()
#define PIN_DELAY() PIN_DELAY_SLOW(DAP_Data.clock_delay)
#if (DAP_JTAG != 0)
// Generate JTAG Sequence
// info: sequence information
// tdi: pointer to TDI generated data
// tdo: pointer to TDO captured data
// return: none
void JTAG_Sequence (uint32_t info, const uint8_t *tdi, uint8_t *tdo) {
uint32_t i_val;
uint32_t o_val;
uint32_t bit;
uint32_t n, k;
n = info & JTAG_SEQUENCE_TCK;
if (n == 0U) {
n = 64U;
}
if (info & JTAG_SEQUENCE_TMS) {
PIN_TMS_SET();
} else {
PIN_TMS_CLR();
}
while (n) {
i_val = *tdi++;
o_val = 0U;
for (k = 8U; k && n; k--, n--) {
JTAG_CYCLE_TDIO(i_val, bit);
i_val >>= 1;
o_val >>= 1;
o_val |= bit << 7;
}
o_val >>= k;
if (info & JTAG_SEQUENCE_TDO) {
*tdo++ = (uint8_t)o_val;
}
}
}
// JTAG Set IR
// ir: IR value
// return: none
#define JTAG_IR_Function(speed) /**/ \
static void JTAG_IR_##speed (uint32_t ir) { \
uint32_t n; \
\
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Select-DR-Scan */ \
JTAG_CYCLE_TCK(); /* Select-IR-Scan */ \
PIN_TMS_CLR(); \
JTAG_CYCLE_TCK(); /* Capture-IR */ \
JTAG_CYCLE_TCK(); /* Shift-IR */ \
\
PIN_TDI_OUT(1U); \
for (n = DAP_Data.jtag_dev.ir_before[DAP_Data.jtag_dev.index]; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass before data */ \
} \
for (n = DAP_Data.jtag_dev.ir_length[DAP_Data.jtag_dev.index] - 1U; n; n--) { \
JTAG_CYCLE_TDI(ir); /* Set IR bits (except last) */ \
ir >>= 1; \
} \
n = DAP_Data.jtag_dev.ir_after[DAP_Data.jtag_dev.index]; \
if (n) { \
JTAG_CYCLE_TDI(ir); /* Set last IR bit */ \
PIN_TDI_OUT(1U); \
for (--n; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass after data */ \
} \
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Bypass & Exit1-IR */ \
} else { \
PIN_TMS_SET(); \
JTAG_CYCLE_TDI(ir); /* Set last IR bit & Exit1-IR */ \
} \
\
JTAG_CYCLE_TCK(); /* Update-IR */ \
PIN_TMS_CLR(); \
JTAG_CYCLE_TCK(); /* Idle */ \
PIN_TDI_OUT(1U); \
}
// JTAG Transfer I/O
// request: A[3:2] RnW APnDP
// data: DATA[31:0]
// return: ACK[2:0]
#define JTAG_TransferFunction(speed) /**/ \
static uint8_t JTAG_Transfer##speed (uint32_t request, uint32_t *data) { \
uint32_t ack; \
uint32_t bit; \
uint32_t val; \
uint32_t n; \
\
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Select-DR-Scan */ \
PIN_TMS_CLR(); \
JTAG_CYCLE_TCK(); /* Capture-DR */ \
JTAG_CYCLE_TCK(); /* Shift-DR */ \
\
for (n = DAP_Data.jtag_dev.index; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass before data */ \
} \
\
JTAG_CYCLE_TDIO(request >> 1, bit); /* Set RnW, Get ACK.0 */ \
ack = bit << 1; \
JTAG_CYCLE_TDIO(request >> 2, bit); /* Set A2, Get ACK.1 */ \
ack |= bit << 0; \
JTAG_CYCLE_TDIO(request >> 3, bit); /* Set A3, Get ACK.2 */ \
ack |= bit << 2; \
\
if (ack != DAP_TRANSFER_OK) { \
/* Exit on error */ \
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Exit1-DR */ \
goto exit; \
} \
\
if (request & DAP_TRANSFER_RnW) { \
/* Read Transfer */ \
val = 0U; \
for (n = 31U; n; n--) { \
JTAG_CYCLE_TDO(bit); /* Get D0..D30 */ \
val |= bit << 31; \
val >>= 1; \
} \
n = DAP_Data.jtag_dev.count - DAP_Data.jtag_dev.index - 1U; \
if (n) { \
JTAG_CYCLE_TDO(bit); /* Get D31 */ \
for (--n; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass after data */ \
} \
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Bypass & Exit1-DR */ \
} else { \
PIN_TMS_SET(); \
JTAG_CYCLE_TDO(bit); /* Get D31 & Exit1-DR */ \
} \
val |= bit << 31; \
if (data) { *data = val; } \
} else { \
/* Write Transfer */ \
val = *data; \
for (n = 31U; n; n--) { \
JTAG_CYCLE_TDI(val); /* Set D0..D30 */ \
val >>= 1; \
} \
n = DAP_Data.jtag_dev.count - DAP_Data.jtag_dev.index - 1U; \
if (n) { \
JTAG_CYCLE_TDI(val); /* Set D31 */ \
for (--n; n; n--) { \
JTAG_CYCLE_TCK(); /* Bypass after data */ \
} \
PIN_TMS_SET(); \
JTAG_CYCLE_TCK(); /* Bypass & Exit1-DR */ \
} else { \
PIN_TMS_SET(); \
JTAG_CYCLE_TDI(val); /* Set D31 & Exit1-DR */ \
} \
} \
\
exit: \
JTAG_CYCLE_TCK(); /* Update-DR */ \
PIN_TMS_CLR(); \
JTAG_CYCLE_TCK(); /* Idle */ \
PIN_TDI_OUT(1U); \
\
/* Capture Timestamp */ \
if (request & DAP_TRANSFER_TIMESTAMP) { \
DAP_Data.timestamp = TIMESTAMP_GET(); \
} \
\
/* Idle cycles */ \
n = DAP_Data.transfer.idle_cycles; \
while (n--) { \
JTAG_CYCLE_TCK(); /* Idle */ \
} \
\
return ((uint8_t)ack); \
}
#undef PIN_DELAY
#define PIN_DELAY() PIN_DELAY_FAST()
JTAG_IR_Function(Fast)
JTAG_TransferFunction(Fast)
#undef PIN_DELAY
#define PIN_DELAY() PIN_DELAY_SLOW(DAP_Data.clock_delay)
JTAG_IR_Function(Slow)
JTAG_TransferFunction(Slow)
// JTAG Read IDCODE register
// return: value read
uint32_t JTAG_ReadIDCode (void) {
uint32_t bit;
uint32_t val;
uint32_t n;
PIN_TMS_SET();
JTAG_CYCLE_TCK(); /* Select-DR-Scan */
PIN_TMS_CLR();
JTAG_CYCLE_TCK(); /* Capture-DR */
JTAG_CYCLE_TCK(); /* Shift-DR */
for (n = DAP_Data.jtag_dev.index; n; n--) {
JTAG_CYCLE_TCK(); /* Bypass before data */
}
val = 0U;
for (n = 31U; n; n--) {
JTAG_CYCLE_TDO(bit); /* Get D0..D30 */
val |= bit << 31;
val >>= 1;
}
PIN_TMS_SET();
JTAG_CYCLE_TDO(bit); /* Get D31 & Exit1-DR */
val |= bit << 31;
JTAG_CYCLE_TCK(); /* Update-DR */
PIN_TMS_CLR();
JTAG_CYCLE_TCK(); /* Idle */
return (val);
}
// JTAG Write ABORT register
// data: value to write
// return: none
void JTAG_WriteAbort (uint32_t data) {
uint32_t n;
PIN_TMS_SET();
JTAG_CYCLE_TCK(); /* Select-DR-Scan */
PIN_TMS_CLR();
JTAG_CYCLE_TCK(); /* Capture-DR */
JTAG_CYCLE_TCK(); /* Shift-DR */
for (n = DAP_Data.jtag_dev.index; n; n--) {
JTAG_CYCLE_TCK(); /* Bypass before data */
}
PIN_TDI_OUT(0U);
JTAG_CYCLE_TCK(); /* Set RnW=0 (Write) */
JTAG_CYCLE_TCK(); /* Set A2=0 */
JTAG_CYCLE_TCK(); /* Set A3=0 */
for (n = 31U; n; n--) {
JTAG_CYCLE_TDI(data); /* Set D0..D30 */
data >>= 1;
}
n = DAP_Data.jtag_dev.count - DAP_Data.jtag_dev.index - 1U;
if (n) {
JTAG_CYCLE_TDI(data); /* Set D31 */
for (--n; n; n--) {
JTAG_CYCLE_TCK(); /* Bypass after data */
}
PIN_TMS_SET();
JTAG_CYCLE_TCK(); /* Bypass & Exit1-DR */
} else {
PIN_TMS_SET();
JTAG_CYCLE_TDI(data); /* Set D31 & Exit1-DR */
}
JTAG_CYCLE_TCK(); /* Update-DR */
PIN_TMS_CLR();
JTAG_CYCLE_TCK(); /* Idle */
PIN_TDI_OUT(1U);
}
// JTAG Set IR
// ir: IR value
// return: none
void JTAG_IR (uint32_t ir) {
if (DAP_Data.fast_clock) {
JTAG_IR_Fast(ir);
} else {
JTAG_IR_Slow(ir);
}
}
// JTAG Transfer I/O
// request: A[3:2] RnW APnDP
// data: DATA[31:0]
// return: ACK[2:0]
uint8_t JTAG_Transfer(uint32_t request, uint32_t *data) {
if (DAP_Data.fast_clock) {
return JTAG_TransferFast(request, data);
} else {
return JTAG_TransferSlow(request, data);
}
}
#endif /* (DAP_JTAG != 0) */

View File

@@ -0,0 +1,800 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Source
* Title: SWO.c CMSIS-DAP SWO I/O
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
#if (SWO_UART != 0)
#include "Driver_USART.h"
#endif
#if (SWO_STREAM != 0)
#include "cmsis_os2.h"
#endif
#if (SWO_STREAM != 0)
#ifdef DAP_FW_V1
#error "SWO Streaming Trace not supported in DAP V1!"
#endif
#endif
#if (SWO_UART != 0)
#ifndef USART_PORT
#define USART_PORT 0 /* USART Port Number */
#endif
// USART Driver
#define _USART_Driver_(n) Driver_USART##n
#define USART_Driver_(n) _USART_Driver_(n)
extern ARM_DRIVER_USART USART_Driver_(USART_PORT);
#define pUSART (&USART_Driver_(USART_PORT))
static uint8_t USART_Ready = 0U;
#endif /* (SWO_UART != 0) */
#if ((SWO_UART != 0) || (SWO_MANCHESTER != 0))
#define SWO_STREAM_TIMEOUT 50U /* Stream timeout in ms */
#define USB_BLOCK_SIZE 512U /* USB Block Size */
#define TRACE_BLOCK_SIZE 64U /* Trace Block Size (2^n: 32...512) */
// Trace State
static uint8_t TraceTransport = 0U; /* Trace Transport */
static uint8_t TraceMode = 0U; /* Trace Mode */
static uint8_t TraceStatus = 0U; /* Trace Status without Errors */
static uint8_t TraceError[2] = {0U, 0U}; /* Trace Error flags (banked) */
static uint8_t TraceError_n = 0U; /* Active Trace Error bank */
// Trace Buffer
static uint8_t TraceBuf[SWO_BUFFER_SIZE]; /* Trace Buffer (must be 2^n) */
static volatile uint32_t TraceIndexI = 0U; /* Incoming Trace Index */
static volatile uint32_t TraceIndexO = 0U; /* Outgoing Trace Index */
static volatile uint8_t TraceUpdate; /* Trace Update Flag */
static uint32_t TraceBlockSize; /* Current Trace Block Size */
#if (TIMESTAMP_CLOCK != 0U)
// Trace Timestamp
static volatile struct {
uint32_t index;
uint32_t tick;
} TraceTimestamp;
#endif
// Trace Helper functions
static void ClearTrace (void);
static void ResumeTrace (void);
static uint32_t GetTraceCount (void);
static uint8_t GetTraceStatus (void);
static void SetTraceError (uint8_t flag);
#if (SWO_STREAM != 0)
extern osThreadId_t SWO_ThreadId;
static volatile uint8_t TransferBusy = 0U; /* Transfer Busy Flag */
static uint32_t TransferSize; /* Current Transfer Size */
#endif
#if (SWO_UART != 0)
// USART Driver Callback function
// event: event mask
static void USART_Callback (uint32_t event) {
uint32_t index_i;
uint32_t index_o;
uint32_t count;
uint32_t num;
if (event & ARM_USART_EVENT_RECEIVE_COMPLETE) {
#if (TIMESTAMP_CLOCK != 0U)
TraceTimestamp.tick = TIMESTAMP_GET();
#endif
index_o = TraceIndexO;
index_i = TraceIndexI;
index_i += TraceBlockSize;
TraceIndexI = index_i;
#if (TIMESTAMP_CLOCK != 0U)
TraceTimestamp.index = index_i;
#endif
num = TRACE_BLOCK_SIZE - (index_i & (TRACE_BLOCK_SIZE - 1U));
count = index_i - index_o;
if (count <= (SWO_BUFFER_SIZE - num)) {
index_i &= SWO_BUFFER_SIZE - 1U;
TraceBlockSize = num;
pUSART->Receive(&TraceBuf[index_i], num);
} else {
TraceStatus = DAP_SWO_CAPTURE_ACTIVE | DAP_SWO_CAPTURE_PAUSED;
}
TraceUpdate = 1U;
#if (SWO_STREAM != 0)
if (TraceTransport == 2U) {
if (count >= (USB_BLOCK_SIZE - (index_o & (USB_BLOCK_SIZE - 1U)))) {
osThreadFlagsSet(SWO_ThreadId, 1U);
}
}
#endif
}
if (event & ARM_USART_EVENT_RX_OVERFLOW) {
SetTraceError(DAP_SWO_BUFFER_OVERRUN);
}
if (event & (ARM_USART_EVENT_RX_BREAK |
ARM_USART_EVENT_RX_FRAMING_ERROR |
ARM_USART_EVENT_RX_PARITY_ERROR)) {
SetTraceError(DAP_SWO_STREAM_ERROR);
}
}
// Enable or disable UART SWO Mode
// enable: enable flag
// return: 1 - Success, 0 - Error
__WEAK uint32_t UART_SWO_Mode (uint32_t enable) {
int32_t status;
USART_Ready = 0U;
if (enable != 0U) {
status = pUSART->Initialize(USART_Callback);
if (status != ARM_DRIVER_OK) {
return (0U);
}
status = pUSART->PowerControl(ARM_POWER_FULL);
if (status != ARM_DRIVER_OK) {
pUSART->Uninitialize();
return (0U);
}
} else {
pUSART->Control(ARM_USART_CONTROL_RX, 0U);
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
pUSART->PowerControl(ARM_POWER_OFF);
pUSART->Uninitialize();
}
return (1U);
}
// Configure UART SWO Baudrate
// baudrate: requested baudrate
// return: actual baudrate or 0 when not configured
__WEAK uint32_t UART_SWO_Baudrate (uint32_t baudrate) {
int32_t status;
uint32_t index;
uint32_t num;
if (baudrate > SWO_UART_MAX_BAUDRATE) {
baudrate = SWO_UART_MAX_BAUDRATE;
}
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
pUSART->Control(ARM_USART_CONTROL_RX, 0U);
if (pUSART->GetStatus().rx_busy) {
TraceIndexI += pUSART->GetRxCount();
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
}
}
status = pUSART->Control(ARM_USART_MODE_ASYNCHRONOUS |
ARM_USART_DATA_BITS_8 |
ARM_USART_PARITY_NONE |
ARM_USART_STOP_BITS_1,
baudrate);
if (status == ARM_DRIVER_OK) {
USART_Ready = 1U;
} else {
USART_Ready = 0U;
return (0U);
}
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
if ((TraceStatus & DAP_SWO_CAPTURE_PAUSED) == 0U) {
index = TraceIndexI & (SWO_BUFFER_SIZE - 1U);
num = TRACE_BLOCK_SIZE - (index & (TRACE_BLOCK_SIZE - 1U));
TraceBlockSize = num;
pUSART->Receive(&TraceBuf[index], num);
}
pUSART->Control(ARM_USART_CONTROL_RX, 1U);
}
return (baudrate);
}
// Control UART SWO Capture
// active: active flag
// return: 1 - Success, 0 - Error
__WEAK uint32_t UART_SWO_Control (uint32_t active) {
int32_t status;
if (active) {
if (!USART_Ready) {
return (0U);
}
TraceBlockSize = 1U;
status = pUSART->Receive(&TraceBuf[0], 1U);
if (status != ARM_DRIVER_OK) {
return (0U);
}
status = pUSART->Control(ARM_USART_CONTROL_RX, 1U);
if (status != ARM_DRIVER_OK) {
return (0U);
}
} else {
pUSART->Control(ARM_USART_CONTROL_RX, 0U);
if (pUSART->GetStatus().rx_busy) {
TraceIndexI += pUSART->GetRxCount();
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
}
}
return (1U);
}
// Start UART SWO Capture
// buf: pointer to buffer for capturing
// num: number of bytes to capture
__WEAK void UART_SWO_Capture (uint8_t *buf, uint32_t num) {
TraceBlockSize = num;
pUSART->Receive(buf, num);
}
// Get UART SWO Pending Trace Count
// return: number of pending trace data bytes
__WEAK uint32_t UART_SWO_GetCount (void) {
uint32_t count;
if (pUSART->GetStatus().rx_busy) {
count = pUSART->GetRxCount();
} else {
count = 0U;
}
return (count);
}
#endif /* (SWO_UART != 0) */
#if (SWO_MANCHESTER != 0)
// Enable or disable Manchester SWO Mode
// enable: enable flag
// return: 1 - Success, 0 - Error
__WEAK uint32_t Manchester_SWO_Mode (uint32_t enable) {
return (0U);
}
// Configure Manchester SWO Baudrate
// baudrate: requested baudrate
// return: actual baudrate or 0 when not configured
__WEAK uint32_t Manchester_SWO_Baudrate (uint32_t baudrate) {
return (0U);
}
// Control Manchester SWO Capture
// active: active flag
// return: 1 - Success, 0 - Error
__WEAK uint32_t Manchester_SWO_Control (uint32_t active) {
return (0U);
}
// Start Manchester SWO Capture
// buf: pointer to buffer for capturing
// num: number of bytes to capture
__WEAK void Manchester_SWO_Capture (uint8_t *buf, uint32_t num) {
}
// Get Manchester SWO Pending Trace Count
// return: number of pending trace data bytes
__WEAK uint32_t Manchester_SWO_GetCount (void) {
}
#endif /* (SWO_MANCHESTER != 0) */
// Clear Trace Errors and Data
static void ClearTrace (void) {
#if (SWO_STREAM != 0)
if (TraceTransport == 2U) {
if (TransferBusy != 0U) {
SWO_AbortTransfer();
TransferBusy = 0U;
}
}
#endif
TraceError[0] = 0U;
TraceError[1] = 0U;
TraceError_n = 0U;
TraceIndexI = 0U;
TraceIndexO = 0U;
#if (TIMESTAMP_CLOCK != 0U)
TraceTimestamp.index = 0U;
TraceTimestamp.tick = 0U;
#endif
}
// Resume Trace Capture
static void ResumeTrace (void) {
uint32_t index_i;
uint32_t index_o;
if (TraceStatus == (DAP_SWO_CAPTURE_ACTIVE | DAP_SWO_CAPTURE_PAUSED)) {
index_i = TraceIndexI;
index_o = TraceIndexO;
if ((index_i - index_o) < SWO_BUFFER_SIZE) {
index_i &= SWO_BUFFER_SIZE - 1U;
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
TraceStatus = DAP_SWO_CAPTURE_ACTIVE;
UART_SWO_Capture(&TraceBuf[index_i], 1U);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
TraceStatus = DAP_SWO_CAPTURE_ACTIVE;
Manchester_SWO_Capture(&TraceBuf[index_i], 1U);
break;
#endif
default:
break;
}
}
}
}
// Get Trace Count
// return: number of available data bytes in trace buffer
static uint32_t GetTraceCount (void) {
uint32_t count;
if (TraceStatus == DAP_SWO_CAPTURE_ACTIVE) {
do {
TraceUpdate = 0U;
count = TraceIndexI - TraceIndexO;
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
count += UART_SWO_GetCount();
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
count += Manchester_SWO_GetCount();
break;
#endif
default:
break;
}
} while (TraceUpdate != 0U);
} else {
count = TraceIndexI - TraceIndexO;
}
return (count);
}
// Get Trace Status (clear Error flags)
// return: Trace Status (Active flag and Error flags)
static uint8_t GetTraceStatus (void) {
uint8_t status;
uint32_t n;
n = TraceError_n;
TraceError_n ^= 1U;
status = TraceStatus | TraceError[n];
TraceError[n] = 0U;
return (status);
}
// Set Trace Error flag(s)
// flag: error flag(s) to set
static void SetTraceError (uint8_t flag) {
TraceError[TraceError_n] |= flag;
}
// Process SWO Transport command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Transport (const uint8_t *request, uint8_t *response) {
uint8_t transport;
uint32_t result;
if ((TraceStatus & DAP_SWO_CAPTURE_ACTIVE) == 0U) {
transport = *request;
switch (transport) {
case 0U:
case 1U:
#if (SWO_STREAM != 0)
case 2U:
#endif
TraceTransport = transport;
result = 1U;
break;
default:
result = 0U;
break;
}
} else {
result = 0U;
}
if (result != 0U) {
*response = DAP_OK;
} else {
*response = DAP_ERROR;
}
return ((1U << 16) | 1U);
}
// Process SWO Mode command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Mode (const uint8_t *request, uint8_t *response) {
uint8_t mode;
uint32_t result;
mode = *request;
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
UART_SWO_Mode(0U);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
Manchester_SWO_Mode(0U);
break;
#endif
default:
break;
}
switch (mode) {
case DAP_SWO_OFF:
result = 1U;
break;
#if (SWO_UART != 0)
case DAP_SWO_UART:
result = UART_SWO_Mode(1U);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
result = Manchester_SWO_Mode(1U);
break;
#endif
default:
result = 0U;
break;
}
if (result != 0U) {
TraceMode = mode;
} else {
TraceMode = DAP_SWO_OFF;
}
TraceStatus = 0U;
if (result != 0U) {
*response = DAP_OK;
} else {
*response = DAP_ERROR;
}
return ((1U << 16) | 1U);
}
// Process SWO Baudrate command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Baudrate (const uint8_t *request, uint8_t *response) {
uint32_t baudrate;
baudrate = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
baudrate = UART_SWO_Baudrate(baudrate);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
baudrate = Manchester_SWO_Baudrate(baudrate);
break;
#endif
default:
baudrate = 0U;
break;
}
if (baudrate == 0U) {
TraceStatus = 0U;
}
*response++ = (uint8_t)(baudrate >> 0);
*response++ = (uint8_t)(baudrate >> 8);
*response++ = (uint8_t)(baudrate >> 16);
*response = (uint8_t)(baudrate >> 24);
return ((4U << 16) | 4U);
}
// Process SWO Control command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Control (const uint8_t *request, uint8_t *response) {
uint8_t active;
uint32_t result;
active = *request & DAP_SWO_CAPTURE_ACTIVE;
if (active != (TraceStatus & DAP_SWO_CAPTURE_ACTIVE)) {
if (active) {
ClearTrace();
}
switch (TraceMode) {
#if (SWO_UART != 0)
case DAP_SWO_UART:
result = UART_SWO_Control(active);
break;
#endif
#if (SWO_MANCHESTER != 0)
case DAP_SWO_MANCHESTER:
result = Manchester_SWO_Control(active);
break;
#endif
default:
result = 0U;
break;
}
if (result != 0U) {
TraceStatus = active;
#if (SWO_STREAM != 0)
if (TraceTransport == 2U) {
osThreadFlagsSet(SWO_ThreadId, 1U);
}
#endif
}
} else {
result = 1U;
}
if (result != 0U) {
*response = DAP_OK;
} else {
*response = DAP_ERROR;
}
return ((1U << 16) | 1U);
}
// Process SWO Status command and prepare response
// response: pointer to response data
// return: number of bytes in response
uint32_t SWO_Status (uint8_t *response) {
uint8_t status;
uint32_t count;
status = GetTraceStatus();
count = GetTraceCount();
*response++ = status;
*response++ = (uint8_t)(count >> 0);
*response++ = (uint8_t)(count >> 8);
*response++ = (uint8_t)(count >> 16);
*response = (uint8_t)(count >> 24);
return (5U);
}
// Process SWO Extended Status command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_ExtendedStatus (const uint8_t *request, uint8_t *response) {
uint8_t cmd;
uint8_t status;
uint32_t count;
#if (TIMESTAMP_CLOCK != 0U)
uint32_t index;
uint32_t tick;
#endif
uint32_t num;
num = 0U;
cmd = *request;
if (cmd & 0x01U) {
status = GetTraceStatus();
*response++ = status;
num += 1U;
}
if (cmd & 0x02U) {
count = GetTraceCount();
*response++ = (uint8_t)(count >> 0);
*response++ = (uint8_t)(count >> 8);
*response++ = (uint8_t)(count >> 16);
*response++ = (uint8_t)(count >> 24);
num += 4U;
}
#if (TIMESTAMP_CLOCK != 0U)
if (cmd & 0x04U) {
do {
TraceUpdate = 0U;
index = TraceTimestamp.index;
tick = TraceTimestamp.tick;
} while (TraceUpdate != 0U);
*response++ = (uint8_t)(index >> 0);
*response++ = (uint8_t)(index >> 8);
*response++ = (uint8_t)(index >> 16);
*response++ = (uint8_t)(index >> 24);
*response++ = (uint8_t)(tick >> 0);
*response++ = (uint8_t)(tick >> 8);
*response++ = (uint8_t)(tick >> 16);
*response++ = (uint8_t)(tick >> 24);
num += 4U;
}
#endif
return ((1U << 16) | num);
}
// Process SWO Data command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t SWO_Data (const uint8_t *request, uint8_t *response) {
uint8_t status;
uint32_t count;
uint32_t index;
uint32_t n, i;
status = GetTraceStatus();
count = GetTraceCount();
if (TraceTransport == 1U) {
n = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8);
if (n > (DAP_PACKET_SIZE - 4U)) {
n = DAP_PACKET_SIZE - 4U;
}
if (count > n) {
count = n;
}
} else {
count = 0U;
}
*response++ = status;
*response++ = (uint8_t)(count >> 0);
*response++ = (uint8_t)(count >> 8);
if (TraceTransport == 1U) {
index = TraceIndexO;
for (i = index, n = count; n; n--) {
i &= SWO_BUFFER_SIZE - 1U;
*response++ = TraceBuf[i++];
}
TraceIndexO = index + count;
ResumeTrace();
}
return ((2U << 16) | (3U + count));
}
#if (SWO_STREAM != 0)
// SWO Data Transfer complete callback
void SWO_TransferComplete (void) {
TraceIndexO += TransferSize;
TransferBusy = 0U;
ResumeTrace();
osThreadFlagsSet(SWO_ThreadId, 1U);
}
// SWO Thread
__NO_RETURN void SWO_Thread (void *argument) {
uint32_t timeout;
uint32_t flags;
uint32_t count;
uint32_t index;
uint32_t i, n;
(void) argument;
timeout = osWaitForever;
for (;;) {
flags = osThreadFlagsWait(1U, osFlagsWaitAny, timeout);
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
timeout = SWO_STREAM_TIMEOUT;
} else {
timeout = osWaitForever;
flags = osFlagsErrorTimeout;
}
if (TransferBusy == 0U) {
count = GetTraceCount();
if (count != 0U) {
index = TraceIndexO & (SWO_BUFFER_SIZE - 1U);
n = SWO_BUFFER_SIZE - index;
if (count > n) {
count = n;
}
if (flags != osFlagsErrorTimeout) {
i = index & (USB_BLOCK_SIZE - 1U);
if (i == 0U) {
count &= ~(USB_BLOCK_SIZE - 1U);
} else {
n = USB_BLOCK_SIZE - i;
if (count >= n) {
count = n;
} else {
count = 0U;
}
}
}
if (count != 0U) {
TransferSize = count;
TransferBusy = 1U;
SWO_QueueTransfer(&TraceBuf[index], count);
}
}
}
}
}
#endif /* (SWO_STREAM != 0) */
#endif /* ((SWO_UART != 0) || (SWO_MANCHESTER != 0)) */

View File

@@ -0,0 +1,286 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Source
* Title: SW_DP.c CMSIS-DAP SW DP I/O
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
// SW Macros
#define PIN_SWCLK_SET PIN_SWCLK_TCK_SET
#define PIN_SWCLK_CLR PIN_SWCLK_TCK_CLR
#define SW_CLOCK_CYCLE() \
PIN_SWCLK_CLR(); \
PIN_DELAY(); \
PIN_SWCLK_SET(); \
PIN_DELAY()
#define SW_WRITE_BIT(bit) \
PIN_SWDIO_OUT(bit); \
PIN_SWCLK_CLR(); \
PIN_DELAY(); \
PIN_SWCLK_SET(); \
PIN_DELAY()
#define SW_READ_BIT(bit) \
PIN_SWCLK_CLR(); \
PIN_DELAY(); \
bit = PIN_SWDIO_IN(); \
PIN_SWCLK_SET(); \
PIN_DELAY()
#define PIN_DELAY() PIN_DELAY_SLOW(DAP_Data.clock_delay)
// Generate SWJ Sequence
// count: sequence bit count
// data: pointer to sequence bit data
// return: none
#if ((DAP_SWD != 0) || (DAP_JTAG != 0))
void SWJ_Sequence (uint32_t count, const uint8_t *data) {
uint32_t val;
uint32_t n;
val = 0U;
n = 0U;
while (count--) {
if (n == 0U) {
val = *data++;
n = 8U;
}
if (val & 1U) {
PIN_SWDIO_TMS_SET();
} else {
PIN_SWDIO_TMS_CLR();
}
SW_CLOCK_CYCLE();
val >>= 1;
n--;
}
}
#endif
// Generate SWD Sequence
// info: sequence information
// swdo: pointer to SWDIO generated data
// swdi: pointer to SWDIO captured data
// return: none
#if (DAP_SWD != 0)
void SWD_Sequence (uint32_t info, const uint8_t *swdo, uint8_t *swdi) {
uint32_t val;
uint32_t bit;
uint32_t n, k;
n = info & SWD_SEQUENCE_CLK;
if (n == 0U) {
n = 64U;
}
if (info & SWD_SEQUENCE_DIN) {
while (n) {
val = 0U;
for (k = 8U; k && n; k--, n--) {
SW_READ_BIT(bit);
val >>= 1;
val |= bit << 7;
}
val >>= k;
*swdi++ = (uint8_t)val;
}
} else {
while (n) {
val = *swdo++;
for (k = 8U; k && n; k--, n--) {
SW_WRITE_BIT(val);
val >>= 1;
}
}
}
}
#endif
#if (DAP_SWD != 0)
// SWD Transfer I/O
// request: A[3:2] RnW APnDP
// data: DATA[31:0]
// return: ACK[2:0]
#define SWD_TransferFunction(speed) /**/ \
static uint8_t SWD_Transfer##speed (uint32_t request, uint32_t *data) { \
uint32_t ack; \
uint32_t bit; \
uint32_t val; \
uint32_t parity; \
\
uint32_t n; \
\
/* Packet Request */ \
parity = 0U; \
SW_WRITE_BIT(1U); /* Start Bit */ \
bit = request >> 0; \
SW_WRITE_BIT(bit); /* APnDP Bit */ \
parity += bit; \
bit = request >> 1; \
SW_WRITE_BIT(bit); /* RnW Bit */ \
parity += bit; \
bit = request >> 2; \
SW_WRITE_BIT(bit); /* A2 Bit */ \
parity += bit; \
bit = request >> 3; \
SW_WRITE_BIT(bit); /* A3 Bit */ \
parity += bit; \
SW_WRITE_BIT(parity); /* Parity Bit */ \
SW_WRITE_BIT(0U); /* Stop Bit */ \
SW_WRITE_BIT(1U); /* Park Bit */ \
\
/* Turnaround */ \
PIN_SWDIO_OUT_DISABLE(); \
for (n = DAP_Data.swd_conf.turnaround; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
\
/* Acknowledge response */ \
SW_READ_BIT(bit); \
ack = bit << 0; \
SW_READ_BIT(bit); \
ack |= bit << 1; \
SW_READ_BIT(bit); \
ack |= bit << 2; \
\
if (ack == DAP_TRANSFER_OK) { /* OK response */ \
/* Data transfer */ \
if (request & DAP_TRANSFER_RnW) { \
/* Read data */ \
val = 0U; \
parity = 0U; \
for (n = 32U; n; n--) { \
SW_READ_BIT(bit); /* Read RDATA[0:31] */ \
parity += bit; \
val >>= 1; \
val |= bit << 31; \
} \
SW_READ_BIT(bit); /* Read Parity */ \
if ((parity ^ bit) & 1U) { \
ack = DAP_TRANSFER_ERROR; \
} \
if (data) { *data = val; } \
/* Turnaround */ \
for (n = DAP_Data.swd_conf.turnaround; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
PIN_SWDIO_OUT_ENABLE(); \
} else { \
/* Turnaround */ \
for (n = DAP_Data.swd_conf.turnaround; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
PIN_SWDIO_OUT_ENABLE(); \
/* Write data */ \
val = *data; \
parity = 0U; \
for (n = 32U; n; n--) { \
SW_WRITE_BIT(val); /* Write WDATA[0:31] */ \
parity += val; \
val >>= 1; \
} \
SW_WRITE_BIT(parity); /* Write Parity Bit */ \
} \
/* Capture Timestamp */ \
if (request & DAP_TRANSFER_TIMESTAMP) { \
DAP_Data.timestamp = TIMESTAMP_GET(); \
} \
/* Idle cycles */ \
n = DAP_Data.transfer.idle_cycles; \
if (n) { \
PIN_SWDIO_OUT(0U); \
for (; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
} \
PIN_SWDIO_OUT(1U); \
return ((uint8_t)ack); \
} \
\
if ((ack == DAP_TRANSFER_WAIT) || (ack == DAP_TRANSFER_FAULT)) { \
/* WAIT or FAULT response */ \
if (DAP_Data.swd_conf.data_phase && ((request & DAP_TRANSFER_RnW) != 0U)) { \
for (n = 32U+1U; n; n--) { \
SW_CLOCK_CYCLE(); /* Dummy Read RDATA[0:31] + Parity */ \
} \
} \
/* Turnaround */ \
for (n = DAP_Data.swd_conf.turnaround; n; n--) { \
SW_CLOCK_CYCLE(); \
} \
PIN_SWDIO_OUT_ENABLE(); \
if (DAP_Data.swd_conf.data_phase && ((request & DAP_TRANSFER_RnW) == 0U)) { \
PIN_SWDIO_OUT(0U); \
for (n = 32U+1U; n; n--) { \
SW_CLOCK_CYCLE(); /* Dummy Write WDATA[0:31] + Parity */ \
} \
} \
PIN_SWDIO_OUT(1U); \
return ((uint8_t)ack); \
} \
\
/* Protocol error */ \
for (n = DAP_Data.swd_conf.turnaround + 32U + 1U; n; n--) { \
SW_CLOCK_CYCLE(); /* Back off data phase */ \
} \
PIN_SWDIO_OUT_ENABLE(); \
PIN_SWDIO_OUT(1U); \
return ((uint8_t)ack); \
}
#undef PIN_DELAY
#define PIN_DELAY() PIN_DELAY_FAST()
SWD_TransferFunction(Fast)
#undef PIN_DELAY
#define PIN_DELAY() PIN_DELAY_SLOW(DAP_Data.clock_delay)
SWD_TransferFunction(Slow)
// SWD Transfer I/O
// request: A[3:2] RnW APnDP
// data: DATA[31:0]
// return: ACK[2:0]
uint8_t SWD_Transfer(uint32_t request, uint32_t *data) {
if (DAP_Data.fast_clock) {
return SWD_TransferFast(request, data);
} else {
return SWD_TransferSlow(request, data);
}
}
#endif /* (DAP_SWD != 0) */

View File

@@ -0,0 +1,54 @@
[Version]
Signature = "$Windows NT$"
Class = USBDevice
ClassGUID = {88BAE032-5A81-49f0-BC3D-A4FF138216D6}
Provider = %ManufacturerName%
DriverVer = 04/13/2016, 1.0.0.0
CatalogFile.nt = CMSIS_DAP_v2_x86.cat
CatalogFile.ntx86 = CMSIS_DAP_v2_x86.cat
CatalogFile.ntamd64 = CMSIS_DAP_v2_amd64.cat
; ========== Manufacturer/Models sections ===========
[Manufacturer]
%ManufacturerName% = Devices, NTx86, NTamd64
[Devices.NTx86]
%DeviceName% = USB_Install, USB\VID_c251&PID_f000
[Devices.NTamd64]
%DeviceName% = USB_Install, USB\VID_c251&PID_f000
; ========== Class definition ===========
[ClassInstall32]
AddReg = ClassInstall_AddReg
[ClassInstall_AddReg]
HKR,,,,%ClassName%
HKR,,NoInstallClass,,1
HKR,,IconPath,0x10000,"%%SystemRoot%%\System32\setupapi.dll,-20"
HKR,,LowerLogoVersion,,5.2
; =================== Installation ===================
[USB_Install]
Include = winusb.inf
Needs = WINUSB.NT
[USB_Install.Services]
Include = winusb.inf
Needs = WINUSB.NT.Services
[USB_Install.HW]
AddReg = Dev_AddReg
[Dev_AddReg]
HKR,,DeviceInterfaceGUIDs,0x10000,"{CDB3B5AD-293B-4663-AA36-1AAE46463776}"
; =================== Strings ===================
[Strings]
ClassName = "Universal Serial Bus devices"
ManufacturerName = "KEIL - Tools By ARM"
DeviceName = "CMSIS-DAP v2"

View File

@@ -0,0 +1,358 @@
/*------------------------------------------------------------------------------
* MDK Middleware - Component ::USB:Device
* Copyright (c) 2004-2016 ARM Germany GmbH. All rights reserved.
*------------------------------------------------------------------------------
* Name: USBD_User_CustomClass_0.c
* Purpose: USB Device Custom Class User module
* Rev.: V6.7.3
*----------------------------------------------------------------------------*/
/*
* USBD_User_CustomClass_0.c is a code template for the Custom Class 0
* class request handling. It allows user to handle all Custom Class class
* requests.
*
* Uncomment "Example code" lines to see example that receives data on
* Endpoint 1 OUT and echoes it back on Endpoint 1 IN.
* To try the example you also have to enable Bulk Endpoint 1 IN/OUT in Custom
* Class configuration in USBD_Config_CustomClass_0.h file.
*/
/**
* \addtogroup usbd_custom_classFunctions
*
*/
//! [code_USBD_User_CustomClass]
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "cmsis_os2.h"
#define osObjectsExternal
#include "osObjects.h"
#include "rl_usb.h"
#include "Driver_USBD.h"
#include "DAP_config.h"
#include "DAP.h"
static volatile uint16_t USB_RequestIndexI; // Request Index In
static volatile uint16_t USB_RequestIndexO; // Request Index Out
static volatile uint16_t USB_RequestCountI; // Request Count In
static volatile uint16_t USB_RequestCountO; // Request Count Out
static volatile uint8_t USB_RequestIdle; // Request Idle Flag
static volatile uint16_t USB_ResponseIndexI; // Response Index In
static volatile uint16_t USB_ResponseIndexO; // Response Index Out
static volatile uint16_t USB_ResponseCountI; // Response Count In
static volatile uint16_t USB_ResponseCountO; // Response Count Out
static volatile uint8_t USB_ResponseIdle; // Response Idle Flag
static uint8_t USB_Request [DAP_PACKET_COUNT][DAP_PACKET_SIZE] __attribute__((section(".bss.USB_IO"))); // Request Buffer
static uint8_t USB_Response[DAP_PACKET_COUNT][DAP_PACKET_SIZE] __attribute__((section(".bss.USB_IO"))); // Response Buffer
static uint16_t USB_RespSize[DAP_PACKET_COUNT]; // Response Size
// \brief Callback function called during USBD_Initialize to initialize the USB Custom class instance
void USBD_CustomClass0_Initialize (void) {
// Handle Custom Class Initialization
// Initialize variables
USB_RequestIndexI = 0U;
USB_RequestIndexO = 0U;
USB_RequestCountI = 0U;
USB_RequestCountO = 0U;
USB_RequestIdle = 1U;
USB_ResponseIndexI = 0U;
USB_ResponseIndexO = 0U;
USB_ResponseCountI = 0U;
USB_ResponseCountO = 0U;
USB_ResponseIdle = 1U;
}
// \brief Callback function called during USBD_Uninitialize to de-initialize the USB Custom class instance
void USBD_CustomClass0_Uninitialize (void) {
// Handle Custom Class De-initialization
}
// \brief Callback function called upon USB Bus Reset signaling
void USBD_CustomClass0_Reset (void) {
// Handle USB Bus Reset Event
}
// \brief Callback function called when Endpoint Start was requested (by activating interface or configuration)
// \param[in] ep_addr endpoint address.
void USBD_CustomClass0_EndpointStart (uint8_t ep_addr) {
// Start communication on Endpoint
if (ep_addr == USB_ENDPOINT_OUT(1U)) {
USB_RequestIdle = 0U;
USBD_EndpointRead(0U, USB_ENDPOINT_OUT(1U), USB_Request[0], DAP_PACKET_SIZE);
}
}
// \brief Callback function called when Endpoint Stop was requested (by de-activating interface or activating configuration 0)
// \param[in] ep_addr endpoint address.
void USBD_CustomClass0_EndpointStop (uint8_t ep_addr) {
// Handle Endpoint communication stopped
(void)ep_addr;
}
// \brief Callback function called when Custom Class 0 received SETUP PACKET on Control Endpoint 0
// (this callback will be called only for Class Requests (USB_REQUEST_CLASS) if it was not processed
// previously by Device callback)
// \param[in] setup_packet pointer to received setup packet.
// \param[out] buf pointer to data buffer used for data stage requested by setup packet.
// \param[out] len pointer to number of data bytes in data stage requested by setup packet.
// \return usbdRequestStatus enumerator value indicating the function execution status
// \return usbdRequestNotProcessed:request was not processed; processing will be done by USB library
// \return usbdRequestOK: request was processed successfully (send Zero-Length Packet if no data stage)
// \return usbdRequestStall: request was processed but is not supported (stall Endpoint 0)
usbdRequestStatus USBD_CustomClass0_Endpoint0_SetupPacketReceived (const USB_SETUP_PACKET *setup_packet, uint8_t **buf, uint32_t *len) {
(void)setup_packet;
(void)buf;
(void)len;
switch (setup_packet->bmRequestType.Recipient) {
case USB_REQUEST_TO_DEVICE:
break;
case USB_REQUEST_TO_INTERFACE:
break;
case USB_REQUEST_TO_ENDPOINT:
break;
default:
break;
}
return usbdRequestNotProcessed;
}
// \brief Callback function called when SETUP PACKET was processed by USB library
// (this callback will be called only for Class Requests (USB_REQUEST_CLASS) if it was not processed
// previously by Device callback nor by Custom Class callback)
// \param[in] setup_packet pointer to processed setup packet.
void USBD_CustomClass0_Endpoint0_SetupPacketProcessed (const USB_SETUP_PACKET *setup_packet) {
(void)setup_packet;
switch (setup_packet->bmRequestType.Recipient) {
case USB_REQUEST_TO_DEVICE:
break;
case USB_REQUEST_TO_INTERFACE:
break;
case USB_REQUEST_TO_ENDPOINT:
break;
default:
break;
}
}
// \brief Callback function called when Custom Class 0 received OUT DATA on Control Endpoint 0
// (this callback will be called only for Class Requests (USB_REQUEST_CLASS) if it was not processed
// previously by Device callback)
// \param[in] len number of received data bytes.
// \return usbdRequestStatus enumerator value indicating the function execution status
// \return usbdRequestNotProcessed:request was not processed; processing will be done by USB library
// \return usbdRequestOK: request was processed successfully (send Zero-Length Packet)
// \return usbdRequestStall: request was processed but is not supported (stall Endpoint 0)
// \return usbdRequestNAK: request was processed but the device is busy (return NAK)
usbdRequestStatus USBD_CustomClass0_Endpoint0_OutDataReceived (uint32_t len) {
(void)len;
return usbdRequestNotProcessed;
}
// \brief Callback function called when Custom Class 0 sent IN DATA on Control Endpoint 0
// (this callback will be called only for Class Requests (USB_REQUEST_CLASS) if it was not processed
// previously by Device callback)
// \param[in] len number of sent data bytes.
// \return usbdRequestStatus enumerator value indicating the function execution status
// \return usbdRequestNotProcessed:request was not processed; processing will be done by USB library
// \return usbdRequestOK: request was processed successfully (return ACK)
// \return usbdRequestStall: request was processed but is not supported (stall Endpoint 0)
// \return usbdRequestNAK: request was processed but the device is busy (return NAK)
usbdRequestStatus USBD_CustomClass0_Endpoint0_InDataSent (uint32_t len) {
(void)len;
return usbdRequestNotProcessed;
}
// \brief Callback function called when DATA was sent or received on Endpoint n
// \param[in] event event on Endpoint:
// - ARM_USBD_EVENT_OUT = data OUT received
// - ARM_USBD_EVENT_IN = data IN sent
void USBD_CustomClass0_Endpoint1_Event (uint32_t event) {
// Handle Endpoint 1 events
uint32_t n;
if (event & ARM_USBD_EVENT_OUT) {
n = USBD_EndpointReadGetResult(0U, USB_ENDPOINT_OUT(1U));
if (n != 0U) {
if (USB_Request[USB_RequestIndexI][0] == ID_DAP_TransferAbort) {
DAP_TransferAbort = 1U;
} else {
USB_RequestIndexI++;
if (USB_RequestIndexI == DAP_PACKET_COUNT) {
USB_RequestIndexI = 0U;
}
USB_RequestCountI++;
osThreadFlagsSet(DAP_ThreadId, 0x01);
}
}
// Start reception of next request packet
if ((uint16_t)(USB_RequestCountI - USB_RequestCountO) != DAP_PACKET_COUNT) {
USBD_EndpointRead(0U, USB_ENDPOINT_OUT(1U), USB_Request[USB_RequestIndexI], DAP_PACKET_SIZE);
} else {
USB_RequestIdle = 1U;
}
}
if (event & ARM_USBD_EVENT_IN) {
if (USB_ResponseCountI != USB_ResponseCountO) {
// Load data from response buffer to be sent back
USBD_EndpointWrite(0U, USB_ENDPOINT_IN(1U), USB_Response[USB_ResponseIndexO], USB_RespSize[USB_ResponseIndexO]);
USB_ResponseIndexO++;
if (USB_ResponseIndexO == DAP_PACKET_COUNT) {
USB_ResponseIndexO = 0U;
}
USB_ResponseCountO++;
} else {
USB_ResponseIdle = 1U;
}
}
}
void USBD_CustomClass0_Endpoint2_Event (uint32_t event) {
// Handle Endpoint 2 events
if (event & ARM_USBD_EVENT_IN) {
SWO_TransferComplete();
}
}
void USBD_CustomClass0_Endpoint3_Event (uint32_t event) {
// Handle Endpoint 3 events
(void)event;
}
void USBD_CustomClass0_Endpoint4_Event (uint32_t event) {
// Handle Endpoint 4 events
(void)event;
}
void USBD_CustomClass0_Endpoint5_Event (uint32_t event) {
// Handle Endpoint 5 events
(void)event;
}
void USBD_CustomClass0_Endpoint6_Event (uint32_t event) {
// Handle Endpoint 6 events
(void)event;
}
void USBD_CustomClass0_Endpoint7_Event (uint32_t event) {
// Handle Endpoint 7 events
(void)event;
}
void USBD_CustomClass0_Endpoint8_Event (uint32_t event) {
// Handle Endpoint 8 events
(void)event;
}
void USBD_CustomClass0_Endpoint9_Event (uint32_t event) {
// Handle Endpoint 9 events
(void)event;
}
void USBD_CustomClass0_Endpoint10_Event (uint32_t event) {
// Handle Endpoint 10 events
(void)event;
}
void USBD_CustomClass0_Endpoint11_Event (uint32_t event) {
// Handle Endpoint 11 events
(void)event;
}
void USBD_CustomClass0_Endpoint12_Event (uint32_t event) {
// Handle Endpoint 12 events
(void)event;
}
void USBD_CustomClass0_Endpoint13_Event (uint32_t event) {
// Handle Endpoint 13 events
(void)event;
}
void USBD_CustomClass0_Endpoint14_Event (uint32_t event) {
// Handle Endpoint 14 events
(void)event;
}
void USBD_CustomClass0_Endpoint15_Event (uint32_t event) {
// Handle Endpoint 15 events
(void)event;
}
// DAP Thread.
__NO_RETURN void DAP_Thread (void *argument) {
uint32_t flags;
uint32_t n;
(void) argument;
for (;;) {
osThreadFlagsWait(0x81U, osFlagsWaitAny, osWaitForever);
// Process pending requests
while (USB_RequestCountI != USB_RequestCountO) {
// Handle Queue Commands
n = USB_RequestIndexO;
while (USB_Request[n][0] == ID_DAP_QueueCommands) {
USB_Request[n][0] = ID_DAP_ExecuteCommands;
n++;
if (n == DAP_PACKET_COUNT) {
n = 0U;
}
if (n == USB_RequestIndexI) {
flags = osThreadFlagsWait(0x81U, osFlagsWaitAny, osWaitForever);
if (flags & 0x80U) {
break;
}
}
}
// Execute DAP Command (process request and prepare response)
USB_RespSize[USB_ResponseIndexI] =
(uint16_t)DAP_ExecuteCommand(USB_Request[USB_RequestIndexO], USB_Response[USB_ResponseIndexI]);
// Update Request Index and Count
USB_RequestIndexO++;
if (USB_RequestIndexO == DAP_PACKET_COUNT) {
USB_RequestIndexO = 0U;
}
USB_RequestCountO++;
if (USB_RequestIdle) {
if ((uint16_t)(USB_RequestCountI - USB_RequestCountO) != DAP_PACKET_COUNT) {
USB_RequestIdle = 0U;
USBD_EndpointRead(0U, USB_ENDPOINT_OUT(1U), USB_Request[USB_RequestIndexI], DAP_PACKET_SIZE);
}
}
// Update Response Index and Count
USB_ResponseIndexI++;
if (USB_ResponseIndexI == DAP_PACKET_COUNT) {
USB_ResponseIndexI = 0U;
}
USB_ResponseCountI++;
if (USB_ResponseIdle) {
if (USB_ResponseCountI != USB_ResponseCountO) {
// Load data from response buffer to be sent back
n = USB_ResponseIndexO++;
if (USB_ResponseIndexO == DAP_PACKET_COUNT) {
USB_ResponseIndexO = 0U;
}
USB_ResponseCountO++;
USB_ResponseIdle = 0U;
USBD_EndpointWrite(0U, USB_ENDPOINT_IN(1U), USB_Response[n], USB_RespSize[n]);
}
}
}
}
}
// SWO Data Queue Transfer
// buf: pointer to buffer with data
// num: number of bytes to transfer
void SWO_QueueTransfer (uint8_t *buf, uint32_t num) {
USBD_EndpointWrite(0U, USB_ENDPOINT_IN(2U), buf, num);
}
// SWO Data Abort Transfer
void SWO_AbortTransfer (void) {
USBD_EndpointAbort(0U, USB_ENDPOINT_IN(2U));
}
//! [code_USBD_User_CustomClass]

View File

@@ -0,0 +1,246 @@
/*------------------------------------------------------------------------------
* MDK Middleware - Component ::USB:Device
* Copyright (c) 2004-2017 ARM Germany GmbH. All rights reserved.
*------------------------------------------------------------------------------
* Name: USBD_User_HID_0.c
* Purpose: USB Device Human Interface Device class (HID) User module
* Rev.: V6.2.3
*----------------------------------------------------------------------------*/
/**
* \addtogroup usbd_hidFunctions
*
* USBD_User_HID_0.c implements the application specific functionality of the
* HID class and is used to receive and send data reports to the USB Host.
*
* The implementation must match the configuration file USBD_Config_HID_0.h.
* The following values in USBD_Config_HID_0.h affect the user code:
*
* - 'Endpoint polling Interval' specifies the frequency of requests
* initiated by USB Host for \ref USBD_HIDn_GetReport.
*
* - 'Number of Output Reports' configures the values for \em rid of
* \ref USBD_HIDn_SetReport.
*
* - 'Number of Input Reports' configures the values for \em rid of
* \ref USBD_HIDn_GetReport and \ref USBD_HID_GetReportTrigger.
*
* - 'Maximum Input Report Size' specifies the maximum value for:
* - return of \ref USBD_HIDn_GetReport
* - len of \ref USBD_HID_GetReportTrigger.
*
* - 'Maximum Output Report Size' specifies the maximum value for \em len
* in \ref USBD_HIDn_SetReport for rtype=HID_REPORT_OUTPUT
*
* - 'Maximum Feature Report Size' specifies the maximum value for \em len
* in \ref USBD_HIDn_SetReport for rtype=HID_REPORT_FEATURE
*
*/
//! [code_USBD_User_HID]
#include <stdint.h>
#include <string.h>
#include "cmsis_os2.h"
#define osObjectsExternal
#include "osObjects.h"
#include "rl_usb.h"
#include "RTE\USB\USBD_Config_HID_0.h"
#include "DAP_config.h"
#include "DAP.h"
#if (USBD_HID0_OUT_REPORT_MAX_SZ != DAP_PACKET_SIZE)
#error "USB HID0 Output Report Size must match DAP Packet Size"
#endif
#if (USBD_HID0_IN_REPORT_MAX_SZ != DAP_PACKET_SIZE)
#error "USB HID Input Report Size must match DAP Packet Size"
#endif
static volatile uint16_t USB_RequestIndexI; // Request Index In
static volatile uint16_t USB_RequestIndexO; // Request Index Out
static volatile uint16_t USB_RequestCountI; // Request Count In
static volatile uint16_t USB_RequestCountO; // Request Count Out
static volatile uint16_t USB_ResponseIndexI; // Response Index In
static volatile uint16_t USB_ResponseIndexO; // Response Index Out
static volatile uint16_t USB_ResponseCountI; // Response Count In
static volatile uint16_t USB_ResponseCountO; // Response Count Out
static volatile uint8_t USB_ResponseIdle; // Response Idle Flag
static uint8_t USB_Request [DAP_PACKET_COUNT][DAP_PACKET_SIZE]; // Request Buffer
static uint8_t USB_Response[DAP_PACKET_COUNT][DAP_PACKET_SIZE]; // Response Buffer
// Called during USBD_Initialize to initialize the USB HID class instance.
void USBD_HID0_Initialize (void) {
// Initialize variables
USB_RequestIndexI = 0U;
USB_RequestIndexO = 0U;
USB_RequestCountI = 0U;
USB_RequestCountO = 0U;
USB_ResponseIndexI = 0U;
USB_ResponseIndexO = 0U;
USB_ResponseCountI = 0U;
USB_ResponseCountO = 0U;
USB_ResponseIdle = 1U;
}
// Called during USBD_Uninitialize to de-initialize the USB HID class instance.
void USBD_HID0_Uninitialize (void) {
}
// \brief Prepare HID Report data to send.
// \param[in] rtype report type:
// - HID_REPORT_INPUT = input report requested
// - HID_REPORT_FEATURE = feature report requested
// \param[in] req request type:
// - USBD_HID_REQ_EP_CTRL = control endpoint request
// - USBD_HID_REQ_PERIOD_UPDATE = idle period expiration request
// - USBD_HID_REQ_EP_INT = previously sent report on interrupt endpoint request
// \param[in] rid report ID (0 if only one report exists).
// \param[out] buf buffer containing report data to send.
// \return number of report data bytes prepared to send or invalid report requested.
// - value >= 0: number of report data bytes prepared to send
// - value = -1: invalid report requested
int32_t USBD_HID0_GetReport (uint8_t rtype, uint8_t req, uint8_t rid, uint8_t *buf) {
(void)rid;
switch (rtype) {
case HID_REPORT_INPUT:
switch (req) {
case USBD_HID_REQ_EP_CTRL: // Explicit USB Host request via Control OUT Endpoint
case USBD_HID_REQ_PERIOD_UPDATE: // Periodic USB Host request via Interrupt OUT Endpoint
break;
case USBD_HID_REQ_EP_INT: // Called after USBD_HID_GetReportTrigger to signal data obtained.
if (USB_ResponseCountI != USB_ResponseCountO) {
// Load data from response buffer to be sent back
memcpy(buf, USB_Response[USB_ResponseIndexO], DAP_PACKET_SIZE);
USB_ResponseIndexO++;
if (USB_ResponseIndexO == DAP_PACKET_COUNT) {
USB_ResponseIndexO = 0U;
}
USB_ResponseCountO++;
return ((int32_t)DAP_PACKET_SIZE);
} else {
USB_ResponseIdle = 1U;
}
break;
}
break;
case HID_REPORT_FEATURE:
break;
}
return (0);
}
// \brief Process received HID Report data.
// \param[in] rtype report type:
// - HID_REPORT_OUTPUT = output report received
// - HID_REPORT_FEATURE = feature report received
// \param[in] req request type:
// - USBD_HID_REQ_EP_CTRL = report received on control endpoint
// - USBD_HID_REQ_EP_INT = report received on interrupt endpoint
// \param[in] rid report ID (0 if only one report exists).
// \param[in] buf buffer that receives report data.
// \param[in] len length of received report data.
// \return true received report data processed.
// \return false received report data not processed or request not supported.
bool USBD_HID0_SetReport (uint8_t rtype, uint8_t req, uint8_t rid, const uint8_t *buf, int32_t len) {
(void)req;
(void)rid;
switch (rtype) {
case HID_REPORT_OUTPUT:
if (len == 0) {
break;
}
if (buf[0] == ID_DAP_TransferAbort) {
DAP_TransferAbort = 1U;
break;
}
if ((uint16_t)(USB_RequestCountI - USB_RequestCountO) == DAP_PACKET_COUNT) {
osThreadFlagsSet(DAP_ThreadId, 0x80U);
break; // Discard packet when buffer is full
}
// Store received data into request buffer
memcpy(USB_Request[USB_RequestIndexI], buf, (uint32_t)len);
USB_RequestIndexI++;
if (USB_RequestIndexI == DAP_PACKET_COUNT) {
USB_RequestIndexI = 0U;
}
USB_RequestCountI++;
osThreadFlagsSet(DAP_ThreadId, 0x01U);
break;
case HID_REPORT_FEATURE:
break;
}
return true;
}
// DAP Thread.
__NO_RETURN void DAP_Thread (void *argument) {
uint32_t flags;
uint32_t n;
(void) argument;
for (;;) {
osThreadFlagsWait(0x81U, osFlagsWaitAny, osWaitForever);
// Process pending requests
while (USB_RequestCountI != USB_RequestCountO) {
// Handle Queue Commands
n = USB_RequestIndexO;
while (USB_Request[n][0] == ID_DAP_QueueCommands) {
USB_Request[n][0] = ID_DAP_ExecuteCommands;
n++;
if (n == DAP_PACKET_COUNT) {
n = 0U;
}
if (n == USB_RequestIndexI) {
flags = osThreadFlagsWait(0x81U, osFlagsWaitAny, osWaitForever);
if (flags & 0x80U) {
break;
}
}
}
// Execute DAP Command (process request and prepare response)
DAP_ExecuteCommand(USB_Request[USB_RequestIndexO], USB_Response[USB_ResponseIndexI]);
// Update Request Index and Count
USB_RequestIndexO++;
if (USB_RequestIndexO == DAP_PACKET_COUNT) {
USB_RequestIndexO = 0U;
}
USB_RequestCountO++;
// Update Response Index and Count
USB_ResponseIndexI++;
if (USB_ResponseIndexI == DAP_PACKET_COUNT) {
USB_ResponseIndexI = 0U;
}
USB_ResponseCountI++;
if (USB_ResponseIdle) {
if (USB_ResponseCountI != USB_ResponseCountO) {
// Load data from response buffer to be sent back
n = USB_ResponseIndexO++;
if (USB_ResponseIndexO == DAP_PACKET_COUNT) {
USB_ResponseIndexO = 0U;
}
USB_ResponseCountO++;
USB_ResponseIdle = 0U;
USBD_HID_GetReportTrigger(0U, 0U, USB_Response[n], DAP_PACKET_SIZE);
}
}
}
}
}
//! [code_USBD_User_HID]

View File

@@ -0,0 +1,71 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Template MDK5
* Title: main.c CMSIS-DAP Main module
*
*---------------------------------------------------------------------------*/
#include "cmsis_os2.h"
#include "osObjects.h"
#include "rl_usb.h"
#include "DAP_config.h"
#include "DAP.h"
// Application Main program
__NO_RETURN void app_main (void *argument) {
(void)argument;
DAP_Setup(); // DAP Setup
USBD_Initialize(0U); // USB Device Initialization
USBD_Connect(0U); // USB Device Connect
while (!USBD_Configured(0U)); // Wait for USB Device to configure
LED_CONNECTED_OUT(1U); // Turn on Debugger Connected LED
LED_RUNNING_OUT(1U); // Turn on Target Running LED
Delayms(500U); // Wait for 500ms
LED_RUNNING_OUT(0U); // Turn off Target Running LED
LED_CONNECTED_OUT(0U); // Turn off Debugger Connected LED
// Create DAP Thread
DAP_ThreadId = osThreadNew(DAP_Thread, NULL, &DAP_ThreadAttr);
// Create SWO Thread
SWO_ThreadId = osThreadNew(SWO_Thread, NULL, &SWO_ThreadAttr);
osDelay(osWaitForever);
for (;;) {};
}
int main (void) {
SystemCoreClockUpdate();
osKernelInitialize(); // Initialize CMSIS-RTOS
osThreadNew(app_main, NULL, NULL); // Create application main thread
if (osKernelGetState() == osKernelReady) {
osKernelStart(); // Start thread execution
}
for (;;) {};
}

View File

@@ -0,0 +1,54 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Template MDK5
* Title: osObjects.h CMSIS-DAP RTOS2 Objects
*
*---------------------------------------------------------------------------*/
#ifndef __osObjects_h__
#define __osObjects_h__
#include "cmsis_os2.h"
#ifdef osObjectsExternal
extern osThreadId_t DAP_ThreadId;
extern osThreadId_t SWO_ThreadId;
#else
const osThreadAttr_t DAP_ThreadAttr = {
.priority = osPriorityNormal
};
const osThreadAttr_t SWO_ThreadAttr = {
.priority = osPriorityAboveNormal
};
extern osThreadId_t DAP_ThreadId;
osThreadId_t DAP_ThreadId;
extern osThreadId_t SWO_ThreadId;
osThreadId_t SWO_ThreadId;
#endif
extern void DAP_Thread (void *argument);
extern void SWO_Thread (void *argument);
extern void app_main (void *argument);
#endif /* __osObjects_h__ */

View File

@@ -0,0 +1,262 @@
;/**************************************************************************//**
; * @file startup_ARMCM3.s
; * @brief CMSIS Core Device Startup File for
; * ARMCM3 Device Series
; * @version V5.00
; * @date 02. March 2016
; ******************************************************************************/
;/*
; * Copyright (c) 2009-2016 ARM Limited. All rights reserved.
; *
; * SPDX-License-Identifier: Apache-2.0
; *
; * Licensed under the Apache License, Version 2.0 (the License); you may
; * not use this file except in compliance with the License.
; * You may obtain a copy of the License at
; *
; * www.apache.org/licenses/LICENSE-2.0
; *
; * Unless required by applicable law or agreed to in writing, software
; * distributed under the License is distributed on an AS IS BASIS, WITHOUT
; * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
; * See the License for the specific language governing permissions and
; * limitations under the License.
; */
;/*
;//-------- <<< Use Configuration Wizard in Context Menu >>> ------------------
;*/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000C00
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WDT_IRQHandler ; 0: Watchdog Timer
DCD RTC_IRQHandler ; 1: Real Time Clock
DCD TIM0_IRQHandler ; 2: Timer0 / Timer1
DCD TIM2_IRQHandler ; 3: Timer2 / Timer3
DCD MCIA_IRQHandler ; 4: MCIa
DCD MCIB_IRQHandler ; 5: MCIb
DCD UART0_IRQHandler ; 6: UART0 - DUT FPGA
DCD UART1_IRQHandler ; 7: UART1 - DUT FPGA
DCD UART2_IRQHandler ; 8: UART2 - DUT FPGA
DCD UART4_IRQHandler ; 9: UART4 - not connected
DCD AACI_IRQHandler ; 10: AACI / AC97
DCD CLCD_IRQHandler ; 11: CLCD Combined Interrupt
DCD ENET_IRQHandler ; 12: Ethernet
DCD USBDC_IRQHandler ; 13: USB Device
DCD USBHC_IRQHandler ; 14: USB Host Controller
DCD CHLCD_IRQHandler ; 15: Character LCD
DCD FLEXRAY_IRQHandler ; 16: Flexray
DCD CAN_IRQHandler ; 17: CAN
DCD LIN_IRQHandler ; 18: LIN
DCD I2C_IRQHandler ; 19: I2C ADC/DAC
DCD 0 ; 20: Reserved
DCD 0 ; 21: Reserved
DCD 0 ; 22: Reserved
DCD 0 ; 23: Reserved
DCD 0 ; 24: Reserved
DCD 0 ; 25: Reserved
DCD 0 ; 26: Reserved
DCD 0 ; 27: Reserved
DCD CPU_CLCD_IRQHandler ; 28: Reserved - CPU FPGA CLCD
DCD 0 ; 29: Reserved - CPU FPGA
DCD UART3_IRQHandler ; 30: UART3 - CPU FPGA
DCD SPI_IRQHandler ; 31: SPI Touchscreen - CPU FPGA
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset Handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WDT_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT TIM0_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT MCIA_IRQHandler [WEAK]
EXPORT MCIB_IRQHandler [WEAK]
EXPORT UART0_IRQHandler [WEAK]
EXPORT UART1_IRQHandler [WEAK]
EXPORT UART2_IRQHandler [WEAK]
EXPORT UART3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT AACI_IRQHandler [WEAK]
EXPORT CLCD_IRQHandler [WEAK]
EXPORT ENET_IRQHandler [WEAK]
EXPORT USBDC_IRQHandler [WEAK]
EXPORT USBHC_IRQHandler [WEAK]
EXPORT CHLCD_IRQHandler [WEAK]
EXPORT FLEXRAY_IRQHandler [WEAK]
EXPORT CAN_IRQHandler [WEAK]
EXPORT LIN_IRQHandler [WEAK]
EXPORT I2C_IRQHandler [WEAK]
EXPORT CPU_CLCD_IRQHandler [WEAK]
EXPORT SPI_IRQHandler [WEAK]
WDT_IRQHandler
RTC_IRQHandler
TIM0_IRQHandler
TIM2_IRQHandler
MCIA_IRQHandler
MCIB_IRQHandler
UART0_IRQHandler
UART1_IRQHandler
UART2_IRQHandler
UART3_IRQHandler
UART4_IRQHandler
AACI_IRQHandler
CLCD_IRQHandler
ENET_IRQHandler
USBDC_IRQHandler
USBHC_IRQHandler
CHLCD_IRQHandler
FLEXRAY_IRQHandler
CAN_IRQHandler
LIN_IRQHandler
I2C_IRQHandler
CPU_CLCD_IRQHandler
SPI_IRQHandler
B .
ENDP
ALIGN
; User Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap PROC
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDP
ALIGN
ENDIF
END

View File

@@ -0,0 +1,68 @@
/**************************************************************************//**
* @file system_ARMCM3.c
* @brief CMSIS Device System Source File for
* ARMCM3 Device Series
* @version V5.00
* @date 07. September 2016
******************************************************************************/
/*
* Copyright (c) 2009-2016 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ARMCM3.h"
/*----------------------------------------------------------------------------
Define clocks
*----------------------------------------------------------------------------*/
#define XTAL ( 5000000UL) /* Oscillator frequency */
#define SYSTEM_CLOCK (5U * XTAL)
/*----------------------------------------------------------------------------
Externals
*----------------------------------------------------------------------------*/
#if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U)
extern uint32_t __Vectors;
#endif
/*----------------------------------------------------------------------------
System Core Clock Variable
*----------------------------------------------------------------------------*/
uint32_t SystemCoreClock = SYSTEM_CLOCK;
/*----------------------------------------------------------------------------
System Core Clock update function
*----------------------------------------------------------------------------*/
void SystemCoreClockUpdate (void)
{
SystemCoreClock = SYSTEM_CLOCK;
}
/*----------------------------------------------------------------------------
System initialization function
*----------------------------------------------------------------------------*/
void SystemInit (void)
{
#if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U)
SCB->VTOR = (uint32_t) &__Vectors;
#endif
SystemCoreClock = SYSTEM_CLOCK;
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,248 @@
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ProjectOpt xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="project_optx.xsd">
<SchemaVersion>1.0</SchemaVersion>
<Header>### uVision Project, (C) Keil Software</Header>
<Extensions>
<cExt>*.c</cExt>
<aExt>*.s*; *.src; *.a*</aExt>
<oExt>*.obj; *.o</oExt>
<lExt>*.lib</lExt>
<tExt>*.txt; *.h; *.inc</tExt>
<pExt>*.plm</pExt>
<CppX>*.cpp</CppX>
<nMigrate>0</nMigrate>
</Extensions>
<DaveTm>
<dwLowDateTime>0</dwLowDateTime>
<dwHighDateTime>0</dwHighDateTime>
</DaveTm>
<Target>
<TargetName>CMSIS_DAP</TargetName>
<ToolsetNumber>0x4</ToolsetNumber>
<ToolsetName>ARM-ADS</ToolsetName>
<TargetOption>
<CLKADS>12000000</CLKADS>
<OPTTT>
<gFlags>1</gFlags>
<BeepAtEnd>1</BeepAtEnd>
<RunSim>0</RunSim>
<RunTarget>1</RunTarget>
<RunAbUc>0</RunAbUc>
</OPTTT>
<OPTHX>
<HexSelection>1</HexSelection>
<FlashByte>65535</FlashByte>
<HexRangeLowAddress>0</HexRangeLowAddress>
<HexRangeHighAddress>0</HexRangeHighAddress>
<HexOffset>0</HexOffset>
</OPTHX>
<OPTLEX>
<PageWidth>79</PageWidth>
<PageLength>66</PageLength>
<TabStop>8</TabStop>
<ListingPath>.\Listings\</ListingPath>
</OPTLEX>
<ListingPage>
<CreateCListing>1</CreateCListing>
<CreateAListing>1</CreateAListing>
<CreateLListing>1</CreateLListing>
<CreateIListing>0</CreateIListing>
<AsmCond>1</AsmCond>
<AsmSymb>1</AsmSymb>
<AsmXref>0</AsmXref>
<CCond>1</CCond>
<CCode>0</CCode>
<CListInc>0</CListInc>
<CSymb>0</CSymb>
<LinkerCodeListing>0</LinkerCodeListing>
</ListingPage>
<OPTXL>
<LMap>1</LMap>
<LComments>1</LComments>
<LGenerateSymbols>1</LGenerateSymbols>
<LLibSym>1</LLibSym>
<LLines>1</LLines>
<LLocSym>1</LLocSym>
<LPubSym>1</LPubSym>
<LXref>0</LXref>
<LExpSel>0</LExpSel>
</OPTXL>
<OPTFL>
<tvExp>1</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<IsCurrentTarget>1</IsCurrentTarget>
</OPTFL>
<CpuCode>7</CpuCode>
<DebugOpt>
<uSim>0</uSim>
<uTrg>1</uTrg>
<sLdApp>1</sLdApp>
<sGomain>0</sGomain>
<sRbreak>1</sRbreak>
<sRwatch>1</sRwatch>
<sRmem>1</sRmem>
<sRfunc>1</sRfunc>
<sRbox>1</sRbox>
<tLdApp>1</tLdApp>
<tGomain>0</tGomain>
<tRbreak>1</tRbreak>
<tRwatch>1</tRwatch>
<tRmem>1</tRmem>
<tRfunc>0</tRfunc>
<tRbox>1</tRbox>
<tRtrace>1</tRtrace>
<sRSysVw>1</sRSysVw>
<tRSysVw>1</tRSysVw>
<sRunDeb>0</sRunDeb>
<sLrtime>0</sLrtime>
<bEvRecOn>1</bEvRecOn>
<bSchkAxf>0</bSchkAxf>
<bTchkAxf>0</bTchkAxf>
<nTsel>3</nTsel>
<sDll></sDll>
<sDllPa></sDllPa>
<sDlgDll></sDlgDll>
<sDlgPa></sDlgPa>
<sIfile>.\test.ini</sIfile>
<tDll></tDll>
<tDllPa></tDllPa>
<tDlgDll></tDlgDll>
<tDlgPa></tDlgPa>
<tIfile>.\test.ini</tIfile>
<pMon>BIN\CMSIS_AGDI.dll</pMon>
</DebugOpt>
<TargetDriverDllRegistry>
<SetRegEntry>
<Number>0</Number>
<Key>ARMRTXEVENTFLAGS</Key>
<Name>-L70 -Z18 -C0 -M0 -T1</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>DLGDARM</Key>
<Name>(1010=-1,-1,-1,-1,0)(1007=-1,-1,-1,-1,0)(1008=-1,-1,-1,-1,0)(1009=-1,-1,-1,-1,0)(1012=-1,-1,-1,-1,0)</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>ARMDBGFLAGS</Key>
<Name>-T0</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>CMSIS_AGDI</Key>
<Name>-X"" -O206 -S8 -C0 -P00 -TO18 -TC10000000 -TP20 -TDS8007 -TDT0 -TDC1F -TIEFFFFFFFF -TIP8 -FO7 -FD20000000 -FC1000 -FN0</Name>
</SetRegEntry>
<SetRegEntry>
<Number>0</Number>
<Key>UL2CM3</Key>
<Name>UL2CM3(-S0 -C0 -P0 -FD20000000 -FC1000)</Name>
</SetRegEntry>
</TargetDriverDllRegistry>
<Breakpoint/>
<Tracepoint>
<THDelay>0</THDelay>
</Tracepoint>
<DebugFlag>
<trace>0</trace>
<periodic>1</periodic>
<aLwin>1</aLwin>
<aCover>0</aCover>
<aSer1>0</aSer1>
<aSer2>0</aSer2>
<aPa>0</aPa>
<viewmode>1</viewmode>
<vrSel>0</vrSel>
<aSym>0</aSym>
<aTbox>0</aTbox>
<AscS1>0</AscS1>
<AscS2>0</AscS2>
<AscS3>0</AscS3>
<aSer3>0</aSer3>
<eProf>0</eProf>
<aLa>0</aLa>
<aPa1>0</aPa1>
<AscS4>0</AscS4>
<aSer4>0</aSer4>
<StkLoc>0</StkLoc>
<TrcWin>0</TrcWin>
<newCpu>0</newCpu>
<uProt>0</uProt>
</DebugFlag>
<LintExecutable></LintExecutable>
<LintConfigFile></LintConfigFile>
<bLintAuto>0</bLintAuto>
<bAutoGenD>0</bAutoGenD>
<LntExFlags>0</LntExFlags>
<pMisraName></pMisraName>
<pszMrule></pszMrule>
<pSingCmds></pSingCmds>
<pMultCmds></pMultCmds>
<pMisraNamep></pMisraNamep>
<pszMrulep></pszMrulep>
<pSingCmdsp></pSingCmdsp>
<pMultCmdsp></pMultCmdsp>
</TargetOption>
</Target>
<Group>
<GroupName>Source Code</GroupName>
<tvExp>1</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel>
<RteFlg>0</RteFlg>
<File>
<GroupNumber>1</GroupNumber>
<FileNumber>1</FileNumber>
<FileType>1</FileType>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<bDave2>0</bDave2>
<PathWithFileName>.\test.c</PathWithFileName>
<FilenameWithoutPath>test.c</FilenameWithoutPath>
<RteFlg>0</RteFlg>
<bShared>0</bShared>
</File>
</Group>
<Group>
<GroupName>Documentation</GroupName>
<tvExp>1</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel>
<RteFlg>0</RteFlg>
<File>
<GroupNumber>2</GroupNumber>
<FileNumber>2</FileNumber>
<FileType>5</FileType>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<bDave2>0</bDave2>
<PathWithFileName>.\readme.txt</PathWithFileName>
<FilenameWithoutPath>readme.txt</FilenameWithoutPath>
<RteFlg>0</RteFlg>
<bShared>0</bShared>
</File>
</Group>
<Group>
<GroupName>::CMSIS</GroupName>
<tvExp>0</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel>
<RteFlg>1</RteFlg>
</Group>
<Group>
<GroupName>::Device</GroupName>
<tvExp>1</tvExp>
<tvExpOptDlg>0</tvExpOptDlg>
<cbSel>0</cbSel>
<RteFlg>1</RteFlg>
</Group>
</ProjectOpt>

View File

@@ -0,0 +1,446 @@
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="project_projx.xsd">
<SchemaVersion>2.1</SchemaVersion>
<Header>### uVision Project, (C) Keil Software</Header>
<Targets>
<Target>
<TargetName>CMSIS_DAP</TargetName>
<ToolsetNumber>0x4</ToolsetNumber>
<ToolsetName>ARM-ADS</ToolsetName>
<pCCUsed>5060750::V5.06 update 6 (build 750)::ARMCC</pCCUsed>
<uAC6>0</uAC6>
<TargetOption>
<TargetCommonOption>
<Device>ARMCM3</Device>
<Vendor>ARM</Vendor>
<PackID>ARM.CMSIS.5.2.0</PackID>
<PackURL>http://www.keil.com/pack/</PackURL>
<Cpu>IRAM(0x20000000,0x00020000) IROM(0x00000000,0x00040000) CPUTYPE("Cortex-M3") CLOCK(12000000) ESEL ELITTLE</Cpu>
<FlashUtilSpec></FlashUtilSpec>
<StartupFile></StartupFile>
<FlashDriverDll>UL2CM3(-S0 -C0 -P0 -FD20000000 -FC1000)</FlashDriverDll>
<DeviceId>0</DeviceId>
<RegisterFile>$$Device:ARMCM3$Device\ARM\ARMCM3\Include\ARMCM3.h</RegisterFile>
<MemoryEnv></MemoryEnv>
<Cmp></Cmp>
<Asm></Asm>
<Linker></Linker>
<OHString></OHString>
<InfinionOptionDll></InfinionOptionDll>
<SLE66CMisc></SLE66CMisc>
<SLE66AMisc></SLE66AMisc>
<SLE66LinkerMisc></SLE66LinkerMisc>
<SFDFile>$$Device:ARMCM3$Device\ARM\SVD\ARMCM3.svd</SFDFile>
<bCustSvd>0</bCustSvd>
<UseEnv>0</UseEnv>
<BinPath></BinPath>
<IncludePath></IncludePath>
<LibPath></LibPath>
<RegisterFilePath></RegisterFilePath>
<DBRegisterFilePath></DBRegisterFilePath>
<TargetStatus>
<Error>0</Error>
<ExitCodeStop>0</ExitCodeStop>
<ButtonStop>0</ButtonStop>
<NotGenerated>0</NotGenerated>
<InvalidFlash>1</InvalidFlash>
</TargetStatus>
<OutputDirectory>.\Objects\</OutputDirectory>
<OutputName>Validation</OutputName>
<CreateExecutable>1</CreateExecutable>
<CreateLib>0</CreateLib>
<CreateHexFile>0</CreateHexFile>
<DebugInformation>1</DebugInformation>
<BrowseInformation>1</BrowseInformation>
<ListingPath>.\Listings\</ListingPath>
<HexFormatSelection>1</HexFormatSelection>
<Merge32K>0</Merge32K>
<CreateBatchFile>0</CreateBatchFile>
<BeforeCompile>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
<nStopU1X>0</nStopU1X>
<nStopU2X>0</nStopU2X>
</BeforeCompile>
<BeforeMake>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
<nStopB1X>0</nStopB1X>
<nStopB2X>0</nStopB2X>
</BeforeMake>
<AfterMake>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
<UserProg2Dos16Mode>0</UserProg2Dos16Mode>
<nStopA1X>0</nStopA1X>
<nStopA2X>0</nStopA2X>
</AfterMake>
<SelectedForBatchBuild>0</SelectedForBatchBuild>
<SVCSIdString></SVCSIdString>
</TargetCommonOption>
<CommonProperty>
<UseCPPCompiler>0</UseCPPCompiler>
<RVCTCodeConst>0</RVCTCodeConst>
<RVCTZI>0</RVCTZI>
<RVCTOtherData>0</RVCTOtherData>
<ModuleSelection>0</ModuleSelection>
<IncludeInBuild>1</IncludeInBuild>
<AlwaysBuild>0</AlwaysBuild>
<GenerateAssemblyFile>0</GenerateAssemblyFile>
<AssembleAssemblyFile>0</AssembleAssemblyFile>
<PublicsOnly>0</PublicsOnly>
<StopOnExitCode>3</StopOnExitCode>
<CustomArgument></CustomArgument>
<IncludeLibraryModules></IncludeLibraryModules>
<ComprImg>1</ComprImg>
</CommonProperty>
<DllOption>
<SimDllName>SARMCM3.DLL</SimDllName>
<SimDllArguments> -MPU</SimDllArguments>
<SimDlgDll>DCM.DLL</SimDlgDll>
<SimDlgDllArguments>-pCM3</SimDlgDllArguments>
<TargetDllName>SARMCM3.DLL</TargetDllName>
<TargetDllArguments> -MPU</TargetDllArguments>
<TargetDlgDll>TCM.DLL</TargetDlgDll>
<TargetDlgDllArguments>-pCM3</TargetDlgDllArguments>
</DllOption>
<DebugOption>
<OPTHX>
<HexSelection>1</HexSelection>
<HexRangeLowAddress>0</HexRangeLowAddress>
<HexRangeHighAddress>0</HexRangeHighAddress>
<HexOffset>0</HexOffset>
<Oh166RecLen>16</Oh166RecLen>
</OPTHX>
</DebugOption>
<Utilities>
<Flash1>
<UseTargetDll>1</UseTargetDll>
<UseExternalTool>0</UseExternalTool>
<RunIndependent>0</RunIndependent>
<UpdateFlashBeforeDebugging>0</UpdateFlashBeforeDebugging>
<Capability>1</Capability>
<DriverSelection>4096</DriverSelection>
</Flash1>
<bUseTDR>1</bUseTDR>
<Flash2>BIN\UL2CM3.DLL</Flash2>
<Flash3>"" ()</Flash3>
<Flash4></Flash4>
<pFcarmOut></pFcarmOut>
<pFcarmGrp></pFcarmGrp>
<pFcArmRoot></pFcArmRoot>
<FcArmLst>0</FcArmLst>
</Utilities>
<TargetArmAds>
<ArmAdsMisc>
<GenerateListings>0</GenerateListings>
<asHll>1</asHll>
<asAsm>1</asAsm>
<asMacX>1</asMacX>
<asSyms>1</asSyms>
<asFals>1</asFals>
<asDbgD>1</asDbgD>
<asForm>1</asForm>
<ldLst>0</ldLst>
<ldmm>1</ldmm>
<ldXref>1</ldXref>
<BigEnd>0</BigEnd>
<AdsALst>1</AdsALst>
<AdsACrf>1</AdsACrf>
<AdsANop>0</AdsANop>
<AdsANot>0</AdsANot>
<AdsLLst>1</AdsLLst>
<AdsLmap>1</AdsLmap>
<AdsLcgr>1</AdsLcgr>
<AdsLsym>1</AdsLsym>
<AdsLszi>1</AdsLszi>
<AdsLtoi>1</AdsLtoi>
<AdsLsun>1</AdsLsun>
<AdsLven>1</AdsLven>
<AdsLsxf>1</AdsLsxf>
<RvctClst>0</RvctClst>
<GenPPlst>0</GenPPlst>
<AdsCpuType>"Cortex-M3"</AdsCpuType>
<RvctDeviceName></RvctDeviceName>
<mOS>0</mOS>
<uocRom>0</uocRom>
<uocRam>0</uocRam>
<hadIROM>1</hadIROM>
<hadIRAM>1</hadIRAM>
<hadXRAM>0</hadXRAM>
<uocXRam>0</uocXRam>
<RvdsVP>0</RvdsVP>
<hadIRAM2>0</hadIRAM2>
<hadIROM2>0</hadIROM2>
<StupSel>8</StupSel>
<useUlib>0</useUlib>
<EndSel>1</EndSel>
<uLtcg>0</uLtcg>
<nSecure>0</nSecure>
<RoSelD>3</RoSelD>
<RwSelD>3</RwSelD>
<CodeSel>0</CodeSel>
<OptFeed>0</OptFeed>
<NoZi1>0</NoZi1>
<NoZi2>0</NoZi2>
<NoZi3>0</NoZi3>
<NoZi4>0</NoZi4>
<NoZi5>0</NoZi5>
<Ro1Chk>0</Ro1Chk>
<Ro2Chk>0</Ro2Chk>
<Ro3Chk>0</Ro3Chk>
<Ir1Chk>1</Ir1Chk>
<Ir2Chk>0</Ir2Chk>
<Ra1Chk>0</Ra1Chk>
<Ra2Chk>0</Ra2Chk>
<Ra3Chk>0</Ra3Chk>
<Im1Chk>1</Im1Chk>
<Im2Chk>0</Im2Chk>
<OnChipMemories>
<Ocm1>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm1>
<Ocm2>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm2>
<Ocm3>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm3>
<Ocm4>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm4>
<Ocm5>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm5>
<Ocm6>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</Ocm6>
<IRAM>
<Type>0</Type>
<StartAddress>0x20000000</StartAddress>
<Size>0x20000</Size>
</IRAM>
<IROM>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x40000</Size>
</IROM>
<XRAM>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</XRAM>
<OCR_RVCT1>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT1>
<OCR_RVCT2>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT2>
<OCR_RVCT3>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT3>
<OCR_RVCT4>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x40000</Size>
</OCR_RVCT4>
<OCR_RVCT5>
<Type>1</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT5>
<OCR_RVCT6>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT6>
<OCR_RVCT7>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT7>
<OCR_RVCT8>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT8>
<OCR_RVCT9>
<Type>0</Type>
<StartAddress>0x20000000</StartAddress>
<Size>0x20000</Size>
</OCR_RVCT9>
<OCR_RVCT10>
<Type>0</Type>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT10>
</OnChipMemories>
<RvctStartVector></RvctStartVector>
</ArmAdsMisc>
<Cads>
<interw>1</interw>
<Optim>1</Optim>
<oTime>0</oTime>
<SplitLS>0</SplitLS>
<OneElfS>1</OneElfS>
<Strict>0</Strict>
<EnumInt>0</EnumInt>
<PlainCh>0</PlainCh>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<wLevel>2</wLevel>
<uThumb>0</uThumb>
<uSurpInc>0</uSurpInc>
<uC99>1</uC99>
<useXO>0</useXO>
<v6Lang>1</v6Lang>
<v6LangP>1</v6LangP>
<vShortEn>1</vShortEn>
<vShortWch>1</vShortWch>
<v6Lto>0</v6Lto>
<v6WtE>0</v6WtE>
<v6Rtti>0</v6Rtti>
<VariousControls>
<MiscControls></MiscControls>
<Define></Define>
<Undefine></Undefine>
<IncludePath></IncludePath>
</VariousControls>
</Cads>
<Aads>
<interw>1</interw>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<thumb>0</thumb>
<SplitLS>0</SplitLS>
<SwStkChk>0</SwStkChk>
<NoWarn>0</NoWarn>
<uSurpInc>0</uSurpInc>
<useXO>0</useXO>
<uClangAs>0</uClangAs>
<VariousControls>
<MiscControls></MiscControls>
<Define></Define>
<Undefine></Undefine>
<IncludePath></IncludePath>
</VariousControls>
</Aads>
<LDads>
<umfTarg>1</umfTarg>
<Ropi>0</Ropi>
<Rwpi>0</Rwpi>
<noStLib>0</noStLib>
<RepFail>1</RepFail>
<useFile>0</useFile>
<TextAddressRange>0x00000000</TextAddressRange>
<DataAddressRange>0x20000000</DataAddressRange>
<pXoBase></pXoBase>
<ScatterFile></ScatterFile>
<IncludeLibs></IncludeLibs>
<IncludeLibsPath></IncludeLibsPath>
<Misc></Misc>
<LinkerInputFile></LinkerInputFile>
<DisabledWarnings></DisabledWarnings>
</LDads>
</TargetArmAds>
</TargetOption>
<Groups>
<Group>
<GroupName>Source Code</GroupName>
<Files>
<File>
<FileName>test.c</FileName>
<FileType>1</FileType>
<FilePath>.\test.c</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>Documentation</GroupName>
<Files>
<File>
<FileName>readme.txt</FileName>
<FileType>5</FileType>
<FilePath>.\readme.txt</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>::CMSIS</GroupName>
</Group>
<Group>
<GroupName>::Device</GroupName>
</Group>
</Groups>
</Target>
</Targets>
<RTE>
<apis/>
<components>
<component Cclass="CMSIS" Cgroup="CORE" Cvendor="ARM" Cversion="5.0.2" condition="ARMv6_7_8-M Device">
<package name="CMSIS" schemaVersion="1.3" url="http://www.keil.com/pack/" vendor="ARM" version="5.2.0"/>
<targetInfos>
<targetInfo name="CMSIS_DAP"/>
</targetInfos>
</component>
<component Cclass="Device" Cgroup="Startup" Cvendor="ARM" Cversion="1.0.1" condition="ARMCM3 CMSIS">
<package name="CMSIS" schemaVersion="1.3" url="http://www.keil.com/pack/" vendor="ARM" version="5.2.0"/>
<targetInfos>
<targetInfo name="CMSIS_DAP"/>
</targetInfos>
</component>
</components>
<files>
<file attr="config" category="sourceAsm" condition="ARMCC" name="Device\ARM\ARMCM3\Source\ARM\startup_ARMCM3.s" version="1.0.0">
<instance index="0">RTE\Device\ARMCM3\startup_ARMCM3.s</instance>
<component Cclass="Device" Cgroup="Startup" Cvendor="ARM" Cversion="1.0.1" condition="ARMCM3 CMSIS"/>
<package name="CMSIS" schemaVersion="1.3" url="http://www.keil.com/pack/" vendor="ARM" version="5.2.0"/>
<targetInfos>
<targetInfo name="CMSIS_DAP"/>
</targetInfos>
</file>
<file attr="config" category="sourceC" name="Device\ARM\ARMCM3\Source\system_ARMCM3.c" version="1.0.0">
<instance index="0">RTE\Device\ARMCM3\system_ARMCM3.c</instance>
<component Cclass="Device" Cgroup="Startup" Cvendor="ARM" Cversion="1.0.1" condition="ARMCM3 CMSIS"/>
<package name="CMSIS" schemaVersion="1.3" url="http://www.keil.com/pack/" vendor="ARM" version="5.2.0"/>
<targetInfos>
<targetInfo name="CMSIS_DAP"/>
</targetInfos>
</file>
</files>
</RTE>
</Project>

View File

@@ -0,0 +1,31 @@
CMSIS-DAP debug unit validation
-------------------------------
The following debug functionality is tested:
- execution breakpoint with hit count
- breakpoint on read
- breakpoint on write
- memory read
- memory write
- register read
- register write
- single stepping
- run/stop
The test is self-contained and can be executed on the hardware target.
Test results get printed into a test log file.
To configure the test for specific hardware target:
1) open the uVision project and select device mounted on hardware target
(automatically selects flash algorithm for download)
2) select CMSIS-DAP debugger (if not already selected)
3) build the project
To run the test on the hardware target:
1) connect hardware target to CMSIS-DAP debug unit via JTAG/SWD
2) connect CMSIS-DAP debug unit to be tested to PC via USB
3) open the uVision project and start debug session
To run the test on the target in batch mode:
execute test.bat

View File

@@ -0,0 +1,50 @@
@ECHO off
REM Usage: test.bat [PATH TO UV4.exe]
IF "%1"=="" (
SET UV4_EXE=C:\Keil\UV4\UV4.exe
) ELSE (
SET UV4_EXE=%1
)
ECHO Using %UV4_EXE%
ECHO.
ECHO Building application...
IF EXIST .\Objects\Validation.axf del .\Objects\Validation.axf
%UV4_EXE% -b Validation.uvprojx
IF EXIST .\Objects\Validation.axf (
ECHO Build succeded
) ELSE (
ECHO Build failed
GOTO :done
)
ECHO.
ECHO Loading application to hardware target...
%UV4_EXE% -f Validation.uvprojx -t"CMSIS_DAP"
IF ERRORLEVEL 1 (
ECHO Flash download failed
GOTO :done
)
ECHO.
ECHO Debugging hardware target...
IF EXIST .\test_results.txt del .\test_results.txt
%UV4_EXE% -d Validation.uvprojx -t"CMSIS_DAP"
IF EXIST .\test_results.txt (
TYPE .\test_results.txt
) ELSE (
ECHO Test ended abnormally - file test_results.txt was not produced
GOTO :done
)
ECHO.
ECHO All tests completed
:done

View File

@@ -0,0 +1,89 @@
/*
* Copyright (c) 2013-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. December 2017
* $Revision: V2.0.0
*
* Project: CMSIS-DAP Validation
* Title: test.c CMSIS-DAP debug unit test module
*
*---------------------------------------------------------------------------*/
// Debug Variables
volatile int test_state = 0;
volatile int test_success = 0;
volatile int bpTestCounter = 0;
volatile char mem_rw_success = 0;
int test_array1[256] = {0};
int test_array2[256] = {0};
// Breakpoint Test function
static void BP_Test (void) {
int i;
for (i = 0; i < 10; i++) {
// increment counter so we know on which iteration breakpoint is hit
bpTestCounter++;
test_state++;
}
}
// Test function
static void Test(void) {
int i;
test_state++; // 'test_state' = 11
i = test_success; // 'test_success' read access
test_state++; // 'test_state' = 12
test_success = i; // 'test_success' write access
test_state++; // 'test_state' = 13
// test_array1 should have already been written by debugger
// copy test_array1 into test_array2 for future comparison
mem_rw_success = 1; // assume all values were written correctly
for (i = 0; i < 256; i++) {
if (test_array1[i] != (0x1000+i)) {
mem_rw_success = 0;
}
test_array2[i] = test_array1[i];
}
test_state++; // 'test_state' = 14
test_state++; // 'test_state' = 15
test_state++; // 'test_state' = 16
// execute 'test_state -= 16' from debugger
test_state++; // 'test_state' = 1
if (test_state == 1) {
test_success = 1;
} else {
test_success = 0;
}
}
// 'main' function
int main (void) {
BP_Test();
Test();
for (;;) {};
}

View File

@@ -0,0 +1,430 @@
/******************************************************************************/
/* test.ini: Initialization file to test the debug functionality */
/******************************************************************************/
/* This file is part of the uVision/ARM development tools. */
/* Copyright (c) 2012-2017 Keil Software. All rights reserved. */
/* This software may only be used under the terms of a valid, current, */
/* end user license from KEIL for a compatible version of KEIL software */
/* development tools. Nothing else gives you the right to use this software. */
/******************************************************************************/
// ensure logging into file is turned off
LOG OFF
// overall test success flag
define int testSuccess;
testSuccess = 0;
// flags to show which particular tests succeeded
define char bpExecSuccess;
bpExecSuccess = 0;
define char bpReadSuccess;
bpReadSuccess = 0;
define char bpWriteSuccess;
bpWriteSuccess = 0;
define char memReadSuccess;
memReadSuccess = 0;
define char memWriteSuccess;
memWriteSuccess = 0;
define char regReadSuccess;
regReadSuccess = 0;
define char regWriteSuccess;
regWriteSuccess = 0;
// function to read and write registers
FUNC void RegReadWrite(void) {
unsigned long VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9;
unsigned long VR10, VR11, VR12, VR13, VR14, VR15, VxPSR;
unsigned long VR_0, VR_1, VR_2, VR_3, VR_4, VR_5, VR_6, VR_7, VR_8, VR_9;
unsigned long VR_10, VR_11, VR_12, VR_13, VR_14, VR_15, V_xPSR;
unsigned long bogus;
bogus = 0x0badF00D;
printf("Register read started\n");
// initialize temporary variables with bogus value
VR0 = bogus;
VR1 = bogus;
VR2 = bogus;
VR3 = bogus;
VR4 = bogus;
VR5 = bogus;
VR6 = bogus;
VR7 = bogus;
VR8 = bogus;
VR9 = bogus;
VR10 = bogus;
VR11 = bogus;
VR12 = bogus;
VR13 = bogus;
VR14 = bogus;
VR15 = bogus;
VxPSR = bogus;
// read and save current register values
VR0 = R0;
VR1 = R1;
VR2 = R2;
VR3 = R3;
VR4 = R4;
VR5 = R5;
VR6 = R6;
VR7 = R7;
VR8 = R8;
VR9 = R9;
VR10 = R10;
VR11 = R11;
VR12 = R12;
VR13 = R13;
VR14 = R14;
VR15 = R15;
VxPSR = xPSR;
// print read register values
printf("R0 = 0x%x\n", VR0);
printf("R1 = 0x%x\n", VR1);
printf("R2 = 0x%x\n", VR2);
printf("R3 = 0x%x\n", VR3);
printf("R4 = 0x%x\n", VR4);
printf("R5 = 0x%x\n", VR5);
printf("R6 = 0x%x\n", VR6);
printf("R7 = 0x%x\n", VR7);
printf("R8 = 0x%x\n", VR8);
printf("R9 = 0x%x\n", VR9);
printf("R10 = 0x%x\n", VR10);
printf("R11 = 0x%x\n", VR11);
printf("R12 = 0x%x\n", VR12);
printf("R13 = 0x%x\n", VR13);
printf("R14 = 0x%x\n", VR14);
printf("R15 = 0x%x\n", VR15);
printf("xPSR = 0x%x\n", VxPSR);
// check if all values differ from bogus value
regReadSuccess =
(VR0 != bogus) &&
(VR1 != bogus) &&
(VR2 != bogus) &&
(VR3 != bogus) &&
(VR4 != bogus) &&
(VR5 != bogus) &&
(VR6 != bogus) &&
(VR7 != bogus) &&
(VR8 != bogus) &&
(VR9 != bogus) &&
(VR10 != bogus) &&
(VR11 != bogus) &&
(VR12 != bogus) &&
(VR13 != bogus) &&
(VR14 != bogus) &&
(VR15 != bogus) &&
(VxPSR != bogus);
if (regReadSuccess != 0) {
printf("Register read passed\n");
} else {
printf("Register read failed\n");
// there is no reason to test write if read fails
return;
}
printf("Register write started\n");
// fill all registers with bogus value
R0 = bogus;
R1 = bogus;
R2 = bogus;
R3 = bogus;
R4 = bogus;
R5 = bogus;
R6 = bogus;
R7 = bogus;
R8 = bogus;
R9 = bogus;
R10 = bogus;
R11 = bogus;
R12 = bogus;
// register R13-R15 and xPSR on hardware do not accept 0x0badf00d, use 0x0 instead
R13 = 0x0;
R14 = 0x0;
R15 = 0x0;
xPSR = 0x0;
// read back into another array
VR_0 = R0;
VR_1 = R1;
VR_2 = R2;
VR_3 = R3;
VR_4 = R4;
VR_5 = R5;
VR_6 = R6;
VR_7 = R7;
VR_8 = R8;
VR_9 = R9;
VR_10 = R10;
VR_11 = R11;
VR_12 = R12;
VR_13 = R13;
VR_14 = R14;
VR_15 = R15;
V_xPSR = xPSR;
// print the values again
printf("R0 = 0x%x\n", VR_0);
printf("R1 = 0x%x\n", VR_1);
printf("R2 = 0x%x\n", VR_2);
printf("R3 = 0x%x\n", VR_3);
printf("R4 = 0x%x\n", VR_4);
printf("R5 = 0x%x\n", VR_5);
printf("R6 = 0x%x\n", VR_6);
printf("R7 = 0x%x\n", VR_7);
printf("R8 = 0x%x\n", VR_8);
printf("R9 = 0x%x\n", VR_9);
printf("R10 = 0x%x\n", VR_10);
printf("R11 = 0x%x\n", VR_11);
printf("R12 = 0x%x\n", VR_12);
printf("R13 = 0x%x\n", VR_13);
printf("R14 = 0x%x\n", VR_14);
printf("R15 = 0x%x\n", VR_15);
printf("xPSR = 0x%x\n", V_xPSR);
// check if new values are bogus
regWriteSuccess =
(VR_0 == bogus) &&
(VR_1 == bogus) &&
(VR_2 == bogus) &&
(VR_3 == bogus) &&
(VR_4 == bogus) &&
(VR_5 == bogus) &&
(VR_6 == bogus) &&
(VR_7 == bogus) &&
(VR_8 == bogus) &&
(VR_9 == bogus) &&
(VR_10 == bogus) &&
(VR_11 == bogus) &&
(VR_12 == bogus) &&
(VR_13 == 0x0) &&
(VR_14 == 0x0) &&
(VR_15 == 0x0) &&
(V_xPSR == 0x0);
if (regWriteSuccess != 0) {
printf("Register write passed\n");
} else {
printf("Register write failed\n");
}
// write saved values back into registers
// values are required to be written correctly for the rest of the test
R0 = VR0;
R1 = VR1;
R2 = VR2;
R3 = VR3;
R4 = VR4;
R5 = VR5;
R6 = VR6;
R7 = VR7;
R8 = VR8;
R9 = VR9;
R10 = VR10;
R11 = VR11;
R12 = VR12;
R13 = VR13;
R14 = VR14;
R15 = VR15;
xPSR = VxPSR;
}
// function to write predefined numbers into test_array1
FUNC void MemWrite(unsigned long address) {
unsigned int i;
unsigned int val;
printf("Memory write started\n");
val = 0x1000;
for (i = 0; i < 256; i++) {
_WWORD(address, val);
val++;
address += 4;
}
printf("Memory write completed\n");
}
// function to read from test_array2 and check if write and read was successful
FUNC void MemRead(unsigned long address) {
unsigned int i;
unsigned int val, v;
printf("Memory read started\n");
val = 0x1000;
memReadSuccess = 1; // assume it is true
for (i = 0; i < 256; i++) {
v = _RWORD(address);
if (v != val) {
memReadSuccess = 0;
}
val++;
address += 4;
}
if (memReadSuccess != 0) {
printf("Memory read passed\n");
} else {
printf("Memory read failed\n");
}
}
// check execution breakpoint
FUNC void CheckBpExec(unsigned long address) {
// PC should be at address and value of bpTestCounter variable should be 9
if ((R15 == address) && (`bpTestCounter == 9)) {
bpExecSuccess = 1;
}
printf("Execution breakpoint (%d): %d\n", `bpTestCounter, bpExecSuccess);
}
// check breakpoint on read
FUNC void CheckBpRead(int test_state) {
// PC should be at address
if (`test_state == test_state) {
bpReadSuccess = 1;
}
printf("Breakpoint on read: %d\n",bpReadSuccess);
}
// check breakpoint on write
FUNC void CheckBpWrite(int test_state) {
// PC should be at address
if (`test_state == test_state) {
bpWriteSuccess = 1;
}
printf("Breakpoint on write: %d\n", bpWriteSuccess);
}
// evaluate test
FUNC void EvalSuccess(void) {
char success;
success = testSuccess &&
bpExecSuccess && bpReadSuccess && bpWriteSuccess &&
regReadSuccess && regWriteSuccess &&
memReadSuccess && memWriteSuccess;
exec("LOG >.\\test_results.txt");
// print test results to log file
if (success) {
printf("Test passed!\n");
} else {
printf("Test failed!\n");
}
printf("\nIndividual test results:\n");
printf("Execution breakpoint: ");
if (bpExecSuccess) {
printf("passed\n");
} else {
printf("failed\n");
}
printf("Breakpoint on read: ");
if (bpReadSuccess) {
printf("passed\n");
} else {
printf("failed\n");
}
printf("Breakpoint on write: ");
if (bpWriteSuccess) {
printf("passed\n");
} else {
printf("failed\n");
}
printf("Register read: ");
if (regReadSuccess) {
printf("passed\n");
} else {
printf("failed\n");
}
printf("Register write: ");
if (regWriteSuccess) {
printf("passed\n");
} else {
printf("failed\n");
}
printf("Memory read: ");
if (memReadSuccess) {
printf("passed\n");
} else {
printf("failed\n");
}
printf("Memory write: ");
if (memWriteSuccess) {
printf("passed\n");
} else {
printf("failed\n");
}
printf("Control flow: ");
if (testSuccess) {
printf("passed\n");
} else {
printf("failed\n");
}
exec("LOG OFF");
}
LOG >.\\test.log // start logging
RegReadWrite(); // check register read/write
BK * // remove all existing breakpoints
BS \test.c\43, 9 // set execution breakpoint (hit count=9)
G // run to break point
CheckBpExec(\test.c\43); // check execution breakpoint
BK * // remove all existing breakpoints
BS READ test_success // set a read access breakpoint
G // run to break point
CheckBpRead(11); // check breakpoint on read
BK * // remove all existing breakpoints
BS WRITE test_success // set a write access breakpoint
G // run to break point
CheckBpWrite(12); // check breakpoint on write
BK * // remove all existing breakpoints
G,\test.c\61 // run until line 61
MemWrite(&test_array1[0]); // test memory write
G,\test.c\69 // run until line 69
memWriteSuccess = `mem_rw_success; // application memory test result
MemRead(&test_array2[0]); // test memory read
T 3 // step 3 times
`test_state -= 16; // modify 'test_state' application variable
G,\test.c\88 // run until line 88
testSuccess = `test_success; // read 'test_success' application variable
LOG OFF // stop logging
EvalSuccess(); // evaluate test results
EXIT // exit debug mode

View File

@@ -25,16 +25,16 @@ add_executable(debugprobe
)
target_sources(debugprobe PRIVATE
CMSIS_5/CMSIS/DAP/Firmware/Source/DAP.c
CMSIS_5/CMSIS/DAP/Firmware/Source/JTAG_DP.c
CMSIS_5/CMSIS/DAP/Firmware/Source/DAP_vendor.c
CMSIS_5/CMSIS/DAP/Firmware/Source/SWO.c
#CMSIS_5/CMSIS/DAP/Firmware/Source/SW_DP.c
CMSIS_DAP/CMSIS/DAP/Firmware/Source/DAP.c
CMSIS_DAP/CMSIS/DAP/Firmware/Source/JTAG_DP.c
CMSIS_DAP/CMSIS/DAP/Firmware/Source/DAP_vendor.c
CMSIS_DAP/CMSIS/DAP/Firmware/Source/SWO.c
#CMSIS_DAP/CMSIS/DAP/Firmware/Source/SW_DP.c
)
target_include_directories(debugprobe PRIVATE
CMSIS_5/CMSIS/DAP/Firmware/Include/
CMSIS_5/CMSIS/Core/Include/
CMSIS_DAP/CMSIS/DAP/Firmware/Include/
CMSIS_DAP/CMSIS/Core/Include/
include/
)
@@ -63,7 +63,7 @@ if (DEBUG_ON_PICO)
OUTPUT_NAME "debugprobe_on_pico2"
)
else ()
error("Unsupported board ${PICO_BOARD}" PICO_BOARD)
message(SEND_ERROR "Unsupported board ${PICO_BOARD}")
endif ()
endif ()

View File

@@ -9,7 +9,7 @@ Firmware source for the Raspberry Pi Debug Probe SWD/UART accessory. Can also be
# Documentation
Debug Probe documentation can be found in the [Pico Getting Started Guide](https://datasheets.raspberrypi.com/pico/getting-started-with-pico.pdf). See "Appendix A: Using the Debug Probe".
Debug Probe documentation can be found at the [Raspberry Pi Microcontroller Documentation portal](https://www.raspberrypi.com/documentation/microcontrollers/debug-probe.html#about-the-debug-probe).
# Hacking
@@ -22,7 +22,7 @@ cd debugprobe
```
Initialize and update the submodules:
```
git submodule update --init
git submodule update --init --recursive
```
Then create and switch to the build directory:
```

View File

@@ -44,6 +44,7 @@ This information includes:
- Optional information about a connected Target Device (for Evaluation Boards).
*/
#include <pico/stdlib.h>
#include <hardware/clocks.h>
#include <hardware/gpio.h>
#include "cmsis_compiler.h"
@@ -52,8 +53,8 @@ This information includes:
/// Processor Clock of the Cortex-M MCU used in the Debug Unit.
/// This value is used to calculate the SWD/JTAG clock speed.
/* Debugprobe actually uses kHz rather than Hz, so just lie about it here */
#define CPU_CLOCK 125000000U ///< Specifies the CPU Clock in Hz.
/* Debugprobe uses PIO for clock generation, so return the current system clock. */
#define CPU_CLOCK clock_get_hz(clk_sys)
/// Number of processor cycles for I/O Port write operations.
/// This value is used to calculate the SWD/JTAG clock speed that is generated with I/O

View File

@@ -61,9 +61,13 @@ static struct _probe probe;
void probe_set_swclk_freq(uint freq_khz) {
uint clk_sys_freq_khz = clock_get_hz(clk_sys) / 1000;
probe_info("Set swclk freq %dKHz sysclk %dkHz\n", freq_khz, clk_sys_freq_khz);
uint32_t divider = clk_sys_freq_khz / freq_khz / 4;
// Round up (otherwise fast swclks get faster)
uint32_t divider = (((clk_sys_freq_khz + freq_khz - 1)/ freq_khz) + 3) / 4;
if (divider == 0)
divider = 1;
if (divider > 65535)
divider = 65535;
pio_sm_set_clkdiv_int_frac(pio0, PROBE_SM, divider, 0);
}

View File

@@ -75,7 +75,7 @@
* is issued. At high datarates this leads to huge variation in instantaneous
* throughput on USB, so a large runway is needed.
*/
#define CFG_TUD_CDC_RX_BUFSIZE 128
#define CFG_TUD_CDC_RX_BUFSIZE 64
#define CFG_TUD_CDC_TX_BUFSIZE 4096
#define CFG_TUD_VENDOR_RX_BUFSIZE 8192

View File

@@ -48,7 +48,7 @@ tusb_desc_device_t const desc_device =
.idVendor = 0x2E8A, // Pi
.idProduct = 0x000c, // CMSIS-DAP Debug Probe
.bcdDevice = 0x0221, // Version 02.21
.bcdDevice = 0x0222, // Version 02.22
.iManufacturer = 0x01,
.iProduct = 0x02,
.iSerialNumber = 0x03,